Final Report

Cawthra Road EA Traffic Operations Analysis

Table of Contents

1 Overview 1
1.1 Study Area 1
1.2 Policy and Planning Framework 2
1.3 Traffic Analysis Approach 3
2 Data Collection 4
2.1 Turning Movement Counts 4
2.2 Historical Traffic Volumes 5
2.3 Regional EMME Model 6
2.4 Link Volume Comparisons 7
3 Existing Conditions 8
3.1 Existing Road Network 8
3.2 Transit Access 10
3.3 Traffic Safety 12
3.4 Existing Operations 13
4 Future Base Conditions 19
4.1 Road Network \& Transit Changes 19
4.2 Traffic Growth Projections 19
4.3 Future Base Operations 21
5 Intersection Operations 26
5.1 Signalized Intersections 26
5.2 Unsignalized Intersections 33
6 Potential Improvements 35
6.1 General Corridor 35
6.2 Signalized Intersections 35
6.3 Additional Mitigation Measures 38
7 Conclusions and Recommendations 41

List of Exhibits

Exhibit 1-1: Study Area 2
Exhibit 2-1: Intersection Count Dates 4
Exhibit 2-2: Traffic Volume Trends on Cawthra Road 5
Exhibit 2-3: Origin of Traffic Utilizing Cawthra Road. 6
Exhibit 3-1: Existing Lane Configuration 9
Exhibit 3-2: Transit Routes Intersecting Study Area 11
Exhibit 3-3: Volume Balancing Adjustments 14
Exhibit 3-4: Existing (2016) - Volumes from Eastgate Pkwy to Santee Gt 15
Exhibit 3-5: Existing (2016) - Volumes from Silver Creek to South Service Rd 16
Exhibit 3-6: Existing (2016) - Signalized Intersection Operations Summary 17
Exhibit 3-7: Existing (2016) - Signalized Intersection LOS Diagram 18
Exhibit 4-1: Modelled Growth Rates in EMME 20
Exhibit 4-2: Future (2031) - Volumes from Eastgate Pkwy to Santee Gate 22
Exhibit 4-3: Future (2031) - Volumes from Silver Creek Blvd to South Service Rd 23
Exhibit 4-4: Future (2031) Base - Signalized Intersection Operations Summary 24
Exhibit 4-5: Future (2031) Base - Signalized Intersection LOS Diagram 25
Exhibit 5-1: Eastgate Pkwy Configuration and Potential Changes 26
Exhibit 5-2: Rathburn Rd Configuration and Potential Changes 27
Exhibit 5-3: Burnhamthorpe Rd Configuration and Potential Changes 28
Exhibit 5-4: Bloor St Configuration and Potential Changes 29
Exhibit 5-5: Queensway Configuration and Potential Changes 31
Exhibit 5-6: North Service Rd Configuration and Potential Changes 32
Exhibit 5-7: South Service Rd Configuration and Potential Changes 33
Exhibit 5-8: Unsignalized Intersection Operations - Existing and Future Comparison 34
Exhibit 6-1: Future (2031) Mitigated - Signalized Intersection Operations Summary 36
Exhibit 6-2: Future (2031) Mitigated - Signalized Intersection LOS Diagram 37
Exhibit 6-3: Signalized Intersection Operations - Comparison with Base Conditions 38

1 Overview

IBI Group is providing technical services to the Region of Peel in support of a Class Environmental Assessment (Class EA) to identify multi-modal improvements along the Cawthra Road corridor for pedestrians, cyclists, transit users, and motorists. This report details existing and future traffic conditions along the corridor and evaluates potential improvements to mitigate operational and safety concern.

1.1 Study Area

The primary study limits extend between Highway 403 / Eastgate Parkway and the South Service Road. While the traffic operations and safety analysis is limited to intersections along this section of Cawthra Road, the transportation planning component has been reviewed within the context of a broader study area that includes Hurontario Street, Dixie Road, Highway 403 and the Queen Elizabeth Way (QEW).
Signalized Intersections:

- Eastgate Parkway
- Meadows Boulevard
- Rathburn Road East
- Burnhamthorpe Road
- Breckenridge Road
(pedestrian signal)
- Bloor Street
- Silver Creek Boulevard

Unsignalized Intersections:

- Hassall Road
- Runningbrook Drive
- Breckenridge Road
- Hyancinthe Boulevard
- Schomberg Avenue
- Cawthra Road at ramp to Dundas Street
- Queensway East
- Tedwyn Drive
- North Service Road
- QEW EB Off-Ramp
- QEW WB Off-Ramp
- South Service Road
- Santee Gate
- Needham Lane
- Orwell Street
- Melton Drive

Exhibit 1-1 illustrates the primary study area, including the above intersections.

Exhibit 1-1: Study Area

1.2 Policy and Planning Framework

There are several policy and planning documents for the local area which provide context and guidance to this study. These documents are summarized below:

- Metrolinx The Big Move (2008) - Represents the Greater Toronto and Hamilton Area (GTHA) multi-modal long-range regional transportation plan. The 25-year plan provides strategic direction for planning, designing and building a strong and efficient regional transportation network.
- Region of Peel Official Plan (2014 review) - Aims to develop an effective and efficient integrated transportation network and encourages an increased public transit modal share. Cawthra Road is under the jurisdiction of the Region of Peel.
- \quad City of Mississauga Official Plan (2016) - Aims to direct growth in ways it will benefit the urban form and support a strong public transportation system. Cawthra Road intersects/crosses several important corridors, including Dundas Street which is designated for intensification and higher-order transit.
- Peel Long Range Transportation Plan (2012 Update) - Identifies Cawthra Road as being subject to potential widening from 4 to 6 lanes within the sections from the QEW to Dundas Street (2019), and from Burnhamthorpe Road to Eastgate Parkway (2030).
- Peel Strategic Goods Movement Network Study (2013) - Cawthra Road is designated as a primary truck route south of Dundas Street (to the QEW), and a connector truck route from north of Dundas Street to Eastgate Parkway.
- Peel Road Characterization Study (2013) - Designates road typologies to all Regional Roads. Cawthra Road is designated as an industrial connector between the Queensway and Dundas Street, and a suburban connector along the rest of the corridor.
- Peel Active Transportation Plan (2011) - Identifies Cawthra Road as part of the Regional pedestrian and cyclist network, and recommends that active transportation improvements are to be introduced along the corridor.
- Moving Mississauga Interim Transportation Strategy (2011) - Outlines the current and future transportation challenges and issues facing Mississauga, and introduces a number of strategic directions and associated action items to be pursued.
- Peel Region Sustainable Transportation Strategy (2018) - The Region's Sustainable Transportation Strategy (STS) recommends a strategy to achieve a 50% mode share target for sustainable modes by 2041, including a complete pedestrian and cycling network plan. The plan identifies Cawthra Road as part of the Regional pedestrian and cyclist network, and recommends that active transportation improvements be introduced along the corridor.
- Mississauga Cycling Master Plan (2018) - The City's updated cycling master plan identifies connecting routes in the vicinity of the Cawthra Road corridor, and incorporates the City's latest planning \& design guidelines for cycling facilities.

1.3 Traffic Analysis Approach

Traffic analysis was performed using Synchro (version 9) as per the Highway Capacity Manual (HCM 2000) methodologies to evaluate overall intersection and individual movement performances. This analysis was undertaken for 2016 and 2031 AM peak hour and PM peak hour conditions.

As per the Region of Peel Traffic Impact Study (TIS) Guidelines, the analysis includes the identification of signalized intersections and unsignalized intersections where:

- Volume/capacity (V/C) ratios for overall intersection operations, through movements or shared through/turning movements exceed 0.90 ; and,
- V/C ratios for exclusive movements exceed 1.00.

Default parameter values listed in the Peel Region TIS Guidelines were also assumed, including ideal saturation flow rate (1900 vehicles per hour), peak hour factor (1.0), lane width for regional roads (3.7 metres), and lane width for intersecting streets/accesses (3.5 metres).

Operational concerns or deficiencies noted in the studied horizon years are identified and addressed through recommendations of potential mitigation measures and/or operational improvements.

2 Data Collection

There are two primary sources of traffic data for this project: Turning Movement Counts (TMC) provided by the City of Mississauga and the Ministry of Transportation (MTO); and Automatic Traffic Recorder (ATR) counts from the Region of Peel.

2.1 Turning Movement Counts

Turning movement counts for the majority of signalized intersections along the Cawthra Road corridor between Highway 403 / Eastgate Parkway and the South Service Road were provided by the Region of Peel (counts were conducted by Trans-Plan Inc. and MG8 Eng.). Counts for the QEW Off-Ramps, North Service Road, and South Service Road were obtained from MTO. While volumes for the QEW On-Ramps were not specifically provided, these volumes were able to be approximated by balancing volumes between adjacent intersections (i.e. between adjacent service roads / off-ramps).

Exhibit 2-1: Intersection Count Dates

Intersection	Date	Counted By
Eastgate Pkwy	2013, March	MG8 Eng
Meadows Blvd	2015, May	Trans-Plan Inc.
Rathburn Rd	2013, March	MG8 Eng
Burnhamthorpe Rd	2015, May	Trans-Plan Inc.
Hassall Rd	2012, April	Region of Peel
Runningbrook Dr	2012, April	Region of Peel
Breckenridge Rd	2015, May	Trans-Plan Inc.
Hyacinthe Blvd	2015, May	Trans-Plan Inc.
Schomberg Ave	2014, November	Trans-Plan Inc.
Bloor St	2015, May	Trans-Plan Inc.
Santee Gt	2015, May	Trans-Plan Inc.
Silver Creek Blvd	2015, May	Trans-Plan Inc.
Cawthra Rd at Ramp to Dundas St	2015, May	Trans-Plan Inc.
Needham Ln	2014, April	Region of Peel
Orwell St	2013, June	MG8 Eng
The Queensway	2015, May	Trans-Plan Inc.
Melton Dr	2015, December	Trans-Plan Inc.
Tedwyn Dr	2015, September	Trans-Plan Inc.
North Service Rd	2013, June	MTO
QEW Westbound Off-Ramp	2013, June	MTO
QEW Eastbound Off-Ramp	2013, June	MTO
South Service Rd	2013, June	MTO

The counts provided by MTO appear to yield noticeably lower link volumes than those observed along the rest of the corridor - and at adjacent intersections. This may be a result of seasonal factors or other variables that were not consistent over the various count periods. The MTO counts were undertaken during summer conditions (June 2013), while the Region's counts were primarily undertaken in May or November (2014/2015). In an effort to balance link volumes with those observed along the rest of the corridor, an adjustment factor of 1.2 was applied to all MTO counts.

2.2 Historical Traffic Volumes

Exhibit 2-2 illustrates northbound and southbound Annual Average Daily Traffic (AADT) volumes along a Cawthra Road between 1996 and 2015 (recorded at a location immediately north of Bloor Street).

Exhibit 2-2: Traffic Volume Trends on Cawthra Road

Prior to 2007, volumes along this central portion of Cawthra Road generally trended sideways, with year-to-year fluctuations. Between 2008 and 2012, the counts reflect a significant annual decrease in link volumes along the corridor. This decrease is not fully understood, however may be associated with some or all of the following factors:

- A reduction in employment and commercial traffic in Mississauga due to the economic recession that took place between 2008 and 2012;
- Increasing congestion on Highway 403 between Hurontario Street and Highway 401 acting to restrict entry and exit volumes to Cawthra Road; and,
- Major construction projects undertaken during some of these years (e.g. the Mississauga Transitway) limiting traffic volumes entering/exiting the corridor.

Recent traffic volumes appear to be rebounding towards pre-2007 volumes, with an average yearly growth rate of approximately 5.8% per year (this growth rate is not assumed to represent background growth to be expected in future years).

2.3 Regional EMME Model

Traffic projections on Cawthra Road were derived using the Peel Region EMME model, which provides high level traffic and transit forecasts with consideration of major planned transportation undertakings. The model has undergone a number of updates for the purposes of this study, both to calibrate the model to better reflect existing conditions, as well as to model different future lane configuration options for Cawthra Road.
For the purposes of this study, existing and future scenarios modelled Cawthra Road based on its existing four-lane cross-section (i.e. two through lanes in both the northbound and southbound directions throughout the corridor, except for the southbound direction between the Queensway and the QEW which is modelled as three lanes).
Volume projections were produced for the following scenarios:

- Existing volumes (modelled under base year 2011);
- Future (2031) projections (accounting for a base ridership estimate for Hurontario LRT), and;
- Future (2031) projections (assuming target mode share for Hurontario LRT).

2.3.1 EMME Base Year Model

The EMME model provides insights regarding on the nature of trips along Cawthra Road.
Exhibit 2-3 below shows the origin of traffic using Cawthra Road, as output from the base year model. The plot suggests that Cawthra Road is an important north-south link in the region, given that it represents a direct connection between Highways 403/410 and the QEW.

Exhibit 2-3: Origin of Traffic Utilizing Cawthra Road

2.3.2 EMME Future Year Models

The 2031 EMME model scenarios incorporate all planned transportation improvements as outlined in Region of Peel Road Improvement Program. The 2031 model scenarios also account for increased transit use in line with the development of rapid transit corridors in the Greater Toronto Area (GTA) through increased transit mode share (not including the Hurontario LRT).

A critical future improvement consists of the planned Light Rail Transit (LRT) line to be constructed on Hurontario Street. The Hurontario LRT will result in a reduced vehicle capacity on Hurontario Street, potentially causing traffic to be diverted onto parallel arterial roads, which includes Cawthra Road. The two future EMME model scenarios differ based on assumed modal split for the Hurontario LRT - a higher ridership estimate for the Hurontario LRT results in a reduction in traffic demand on Cawthra Road, as passenger vehicle mode share is in effect reduced.

2.4 Link Volume Comparisons

In comparing the available data, it was noted that the approach/link volumes derived from the TMC data were substantially higher throughout the corridor than those obtained from the EMME model outputs. In saying this, both sets of volume data have an important function in determining appropriate volumes to model in this analysis, as described below:

- Turning Movement Counts are taken to represent existing conditions (adjusted to base year 2016), and modelled in Synchro to analyze existing traffic operations. The existing conditions analysis is outlined in Section 3.4.
- EMME model outputs are used to derive an annual background growth rate that is representative for the study area. The compound annual growth rate is determined by comparing the 2011 base conditions EMME model with the 2031 future conditions (assuming target mode share) EMME model. This process is described in greater detail in Section 4.2.
- This annual growth rate (derived by comparing EMME scenarios) is applied to the existing Turning Movement Counts to estimate future traffic movements, which are modelled in Synchro to analyze future traffic operations. The future base conditions analysis is outlined in Section 4.3, and future mitigated conditions analysis outlined in Section 6.2.

3 Existing Conditions

3.1 Existing Road Network

The major roadways within the study area are outlined below:

- Cawthra Road is a four lane north-south arterial road located in Mississauga within the Regional Municipality of Peel, connecting Eastgate Parkway to Lakeshore Road. Within the study area, Cawthra Road primarily serves residential areas with the exception of the section from Dundas Street to the Queensway. There is a centre auxiliary turning lane throughout the corridor north of Dundas Street. A grade separated intersection exists at Dundas Street, where access is provided via a ramp. Cawthra Road has a posted speed limit of $50 \mathrm{~km} / \mathrm{h}$.
- Highway 403 is a 400 -series highway (freeway) that runs east-west through Mississauga and connects to Highway 401 immediately north of the study area. Full access is available to Highway 403 via the Cawthra Road - Eastgate Parkway intersection.
- Eastgate Parkway is a four lane road and is the northern terminus of Cawthra Road. At Cawthra Road, the north and west legs of the intersection provide access to/from Highway 403. Eastgate Parkway runs adjacent to a hydro corridor and the Mississauga Transitway, connecting Highway 403 and Eglinton Avenue East. There is a posted speed limit of $70 \mathrm{~km} / \mathrm{h}$.
- Rathburn Road is a four lane east-west arterial road that is confined by Creditview Road Burnhamthorpe Road. Within the study area, it has a posted speed limit of $50 \mathrm{~km} / \mathrm{h}$.
- Burnhamthorpe Road is a four lane east-west arterial road that spans throughout Mississauga, connecting the western Highway 403 boundary to the eastern Highway 427 boundary. It has a posted speed limit of $60 \mathrm{~km} / \mathrm{h}$.
- Bloor Street is a four lane east-west arterial road which extends easterly from Central Parkway within the City of Mississauga. Channelized right turns exist for all directions except for the northbound right turn. There is a posted speed limit of $50 \mathrm{~km} / \mathrm{h}$.
- Dundas Street is a six lane east-west arterial road that extends through Mississauga into both Oakville and Toronto on the west and east ends, respectively. Due to close proximity to the frequently used Galt sub rail line by Canadian Pacific and GO Transit operations, a ramp is used to connect Cawthra Road and Dundas Street (jug handle configuration). Both ramp intersections are signalized. Dundas Street has a posted speed limit of $60 \mathrm{~km} / \mathrm{h}$.
- The Queensway is a six lane east-west arterial road that connects Old Carriage Road (west of Mavis Road) to the Highway 427 border of Mississauga. It has channelized right turns for all directions at Cawthra Road. The Queensway has a posted speed limit of 60 km / h.
- Queen Elizabeth Way (QEW) is a 400-series highway (freeway) that links Toronto to Fort Erie. A full interchange is provided at the QEW-Cawthra Road.
A simplified representation of the existing configuration can be seen in Exhibit 3-1.

Exhibit 3-1: Existing Lane Configuration

3.2 Transit Access

The Mississauga MiWay transit system serves the Greater Mississauga area, connecting to adjacent local transit systems of Oakville, Brampton, York, and Etobicoke (Toronto Transit Commission). The MiWay system comprises of two main services: MiLocal services (local transit routes that include frequent stops), and MiExpress (select express routes that connect major destinations). The various MiWay routes present within the study area are illustrated in Exhibit 3-2, and summarized below:

- The Mississauga Transitway is a Bus Rapid Transit (BRT) corridor running east-west across Mississauga, a large portion of which runs along Highway 403. The corridor intersects Cawthra Road at Eastgate Parkway, and includes 12 stations. The line connects the Winston Churchill GO Station to the west to Renforth Gateway to the east. The BRT line serves a number of MiExpress services.
- MiWay Route 8 (Cawthra) is a local service that operates along the length of Cawthra Road, connecting City Centre Transit Terminal (Square One) to Port Credit GO Station via Bloor Street. Buses run at approximately 20-minute headways during peak hours.
- MiExpress Route 109 (Meadowvale Express) is an express service that connects Meadowvale Town Centre (Mississauga) to Islington Subway Station (Toronto) via Winston Churchill Blvd, Highway 403, Mississauga Transitway, Highway 427, and Dundas St. Buses run at approximately 12-minute headways during peak hours.
- MiExpress Route $\mathbf{1 0 7}$ (Malton Express) is an express service that connects the Mississauga City Centre Transit Terminal to University of Guelph-Humber (Humber College, Toronto) via the Mississauga Transitway. Buses run at approximately 12-minute headways during peak hours.
- MiExpress Route 101 (Dundas Express) is an express service running from University of Toronto Mississauga Campus (UTM) to Islington Subway Station (Toronto), with a branch to Winston Churchill Blvd. Buses run at approximately 10-minute headways during peak hours.
- MiWay Route 21 (Explorer) is a local service that runs only during peak travel periods. The route connects City Centre Transit Terminal to Skymark Hub via the Mississauga Transitway. Buses run at approximately 20-minute headways.
- MiWay Route 20 (Rathburn) is a local service that connects Erindale GO Station (Mississauga) to Islington Subway Station (Toronto) on Rathburn Rd. Buses run at approximately 20 -minute headways during peak hours.
- MiWay Route $\mathbf{2 6}$ (Burnhamthorpe) is a local service that travels along Burnhamthorpe Road between South Common Centre (Mississauga) and Islington Subway Station (Toronto). Buses run at approximately 15 -minute headways during peak hours.
- MiWay Route 76 (City Centre - Subway) is a local service that connects City Centre Transit Terminal (Square One) to Islington Subway Station (Toronto) via Burnhamthorpe Road, Highway 427, and Dundas St. Buses run at approximately 15-minute headways during peak hours.
- MiWay Route $\mathbf{3}$ (Bloor) is a local service that connects City Centre Transit Terminal (Square One) to Islington Subway Station (Toronto) via Bloor St. Buses run at approximately 10 -minute headways during peak hour;
- MiWay Route 1 (Dundas) is a local service that connects Winston Churchill Blvd to Islington Subway Station (Toronto) via Dundas St, with a branch that has a western terminus at UTM. Buses run at approximately 10-minute headways during peak hours.
- MiWay Route 4 (Sherway Gardens) is a local service that connects Dundas St W at Erindale Station Road to Sherway Gardens (Toronto) via North Service Road. Buses run at approximately 25-minute headways during peak hours.

Exhibit 3-2: Transit Routes Intersecting Study Area

MiWay provided input into the study regarding removal or relocation of existing stops along Cawthra Road, as well as preferred stop and/or bay locations. It was noted that MiWay anticipates more frequent bus level of service along Cawthra Road in the future and that local bus service will be extended along Cawthra Road north of Bloor Street, and connect to the new BRT station at Eastgate Parkway.

In addition to the above, MiWay requested that the Region give consideration to the following as part of the current study:

- Protect for future shelters at stop locations;
- Avoid conflict between transit users and cyclist at stop locations (further details regarding the cycle track configuration at bus stop locations is separately addressed in the Active Transportation Report);
- Provide traffic signals to accommodate pedestrians at Needham Lane and in the vicinity of Santee Gate, thus providing mid-block pedestrian crossing opportunities between key signalized intersections within the central section of the study area (further addressed in Section 6.4); and
- Provide for a far side 'acceleride style' bus bay (with option of queue jump lane) at several locations along Cawthra Road, i.e. generally where an exclusive right turn lane is available on the intersection approach and could be used by buses under exemption to by-pass through lane queues (to be clarified and addressed separately through consultation with MiWay as part of this study).

3.3 Traffic Safety

A traffic safety review has been undertaken along Cawthra Road as part of this study. The review was based on historical collision data for the study area, summarizing the reported intersection and midblock collisions along the corridor for the five-year period from January 1, 2008 through December 31, 2012. Vehicle speed, counts and classification data were also considered as part of the safety review, presented in Appendix A. A summary of the conclusions are provided below:
In general:

- There were a total of 1007 collisions reported for the corridor over the 5 -year analysis period, and the majority (890) occurred at intersections;
- There were 143 non-fatal injury collisions, most of which were rear end (53) or turning movement (53), and 2 fatal collisions, both of which were angle collisions;
- The dominant collision impact type throughout the corridor was rear-end collisions (45\%), followed by turning movement collisions (33\%); and,
- Weather and compromised road surface conditions were also a factor in a significant number of collisions, at 20% and 30%, respectively; however, these distributions may not constitute statistical over-representations.

Specific to individual intersections along the corridor:

- The intersection of Cawthra Road at Eastgate Parkway/Highway 403 exhibited the second highest frequency and rate of collisions over the five-year study period, contributed by a transition from highway to arterial speeds in both the north-south and east-west directions;
- Turning movement collisions were the dominant collision type at the intersection of Cawthra Road at Burnhamthorpe Road East, which differed from all other intersections. The southbound left turning vehicles colliding with northbound through vehicles comprised 70 of the 87 turning movement collisions at the intersection indicating a significant problem. Recent intersection geometry improvements could have partially addressed the southbound left problem; further study once several years of collision data are available is recommended to assess the new intersection geometry performance;
- The midblock segment at 3643 Cawthra Road, 120 metres south of Burnhamthorpe Road East, was found to have a high frequency of collisions at a plaza entrance, with leftturns into the plaza using a centre left-turn lane. Further analysis of midblock operations may determine if changes are warranted at this location;
- Excessive speeding, as observed along the entire corridor, was likely a factor contributing to the history of collisions at the intersection of Cawthra Road and Bloor Street, with 85th percentile speeds often reaching above $70 \mathrm{~km} / \mathrm{h}$;
- Inconsistent lane markings at the intersection of Cawthra Road and the Dundas Street ramp may be contributing to rear-end collisions caused by drivers misjudging the southbound merge from the right-turn channel. Clear merge lane markings would help alleviate the ambiguity of lane configuration and right-of-way;
- The midblock segment immediately north of Queensway East was found to have an exceptionally large number of left-turn collisions into the commercial driveway at 655 Queensway East. Similar to the other midblock segment noted above, there is a centre left-turn lane and an opposing lane configuration over 3 lanes wide;
- The intersection of Cawthra Road and Queensway East was found to have a large frequency and rate of collisions, with potential sightline issues related to the asymmetry of the left-turn lanes. Traffic operations should be analyzed to determine if volumes may warrant a reconfiguration of the left-turn lanes to fully protected, dual left-turns;
- Both the North and South Service Roads were identified to have a high incidence of collisions related to drivers misjudging the sharpness of the eastbound and westbound approach curves. Improved signage and the use of auxiliary signal heads may help to better warn drivers of the signalized intersection ahead;
- The downhill grade and right-hand bend on the southbound approach to the intersection of Cawthra Road and the eastbound QEW off-ramp may have contributed to the prevalence of southbound rear-end collisions at this location. Similar treatments as described for the service roads could be applied to mitigate the safety concerns at this intersection; and
- Corridor speed and volume data suggest that overall, excessive speeding is a concern along Cawthra Road, with 85th percentile speeds frequently reaching over $20 \mathrm{~km} / \mathrm{h}$ above the posted speed limit. Recurring congestion was not found to be a crucial issue throughout the corridor. Therefore, caution should be exercised as to not create conditions that further encourage higher speeds in an effort to alleviate peak period congestion.

3.4 Existing Operations

TMC data was used to represent existing traffic volumes, however movements were adjusted to a consistent base year taken as 2016. In order to do this, an annual compound growth of 0.83% (derived in Section 2.4) was applied to 'major' movements, including all through movements along arterial roads and all turning between two arterial roads.

Traffic volumes along the corridor were balanced, in order to address differences between total approach volumes and the total volumes of the downstream receiving lanes. This was accomplished by applying the following general assumptions:

- Volume imbalances were anticipated at certain locations. If the adjacent land use and presence of accesses directly along sections of Cawthra Road indicate that a large number of vehicle trips originate / end at these locations, a volume imbalance between adjacent intersections is expected to some degree.
- All volume adjustments were applied to the through movements only, i.e. southbound through (SBT) and northbound through (NBT) movements.
- Volume adjustments were prioritized at minor intersections (i.e. intersecting local streets) rather than being made at major intersections (i.e. arterials or major collectors).
- Volumes at major intersections (i.e. intersecting arterials or major collectors) were never reduced; these intersections were limited to volume increases only.

The traffic volume adjustments made to the SBT and NBT movements at each intersection along Cawthra Road are summarized in Exhibit 3-3.

Exhibit 3-3: Volume Balancing Adjustments

Intersection	AM Peak Vehicle Balancing		PM Peak Vehicle Balancing	
	SB Thru	NB Thru	SB Thru	NB Thru
Eastgate Pkwy				
Meadows Blvd	300		500	
Rathburn Rd				
Burnhamthorpe Rd	200	100	200	100
Hassall Rd				
Runningbrook Dr		-200	-200	
Breckenridge Rd	-400	-300		
Hyacinthe Blvd	200			
Schomberg Ave				
Bloor St				
Santee Gt				
Silver Creek Blvd				
Ramp to Dundas St				
Needham Ln				
Orwell St				
The Queensway				
Melton Dr				
Tedwyn Dr				
North Service Rd				
QEW WB and EB Off-Ramps				
South Service Rd				

Analysis was conducted for weekday AM and PM peak hour conditions. Existing traffic volumes (including volume balancing adjustments) are illustrated in Exhibit 3-4 and Exhibit 3-5.

Exhibit 3-4: Existing (2016) - Volumes from Eastgate Pkwy to Santee Gt

Exhibit 3-5: Existing (2016) - Volumes from Silver Creek to South Service Rd

A summary of overall intersection operations for the existing base condition analysis is provided in Exhibit 3-6. Detailed output of the Synchro analysis is provided in Appendix B.

Exhibit 3-6: Existing (2016) - Signalized Intersection Operations Summary

Cawthra Rd Intersection (Existing Condition)	2016 AM Peak Intersection Performance			2016 PM Peak Intersection Performance		
	LOS	Delay (s)	V/C	LOS	Delay (s)	V/C
Eastgate Pkwy	E	60.7	1.04	E	56.8	0.97
Meadows Blvd	A	8.8	0.46	A	5.6	0.64
Rathburn Rd	C	32.1	0.73	D	54.1	0.96
Burnhamthorpe Rd	D	52.2	1.00	E	59.7	1.12
Bloor St	D	49.2	0.83	D	43.5	0.97
Silver Creek Blvd	C	21.1	0.74	C	25.4	0.81
Ramp to Dundas	B	14.3	0.63	C	30.2	0.69
Queensway	D	48.6	0.85	F	87.2	1.08
Tedwyn Dr	A	7.9	0.53	A	8.5	0.58
North Service Rd	C	31.1	0.86	F	85.9	1.24
South Service Rd	D	42.8	0.99	C	31.7	0.97

Overall LOS for each signalized intersection, as per the existing operations analysis, is illustrated in Exhibit 3-7.

Exhibit 3-7: Existing (2016) - Signalized Intersection LOS Diagram

4 Future Base Conditions

4.1 Road Network \& Transit Changes

There are several relevant transportation projects underway in the City of Mississauga which may influence transportation patterns in the City and along Cawthra Road. A short description of each is provided below. Additional information on these studies is available online.

- The Mississauga Transitway: The BRT transitway which runs along Highway 403 west of Cawthra Road and extends easterly to Commerce Boulevard (the Renforth Gateway), located on Eglinton Avenue West. The line was recently expanded to include 12 stations, including a station at the north end of Cawthra Road at Eastgate Parkway.
- Hurontario-Main Light Rail Transit (LRT): A Class EA study and preliminary design was undertaken for the Hurontario-Main Light Rail Transit (LRT) line, which will include 22 stops along Hurontario Street from Port Credit into Brampton. The design and construction is currently proceeding as a Public Private Partnership (P3).
- Dundas Street Rapid Transit: The Mississauga Official Plan identifies Dundas Street as a priority for intensification and upward growth. This coincides with the plan to introduce higher order transit to the Dundas corridor, likely in the form of Bus Rapid Transit (BRT).
- MiWay Route 8 (Cawthra): The MiWay Route 8 local service, which currently runs on Cawthra Road as far north as Bloor Street, will be extended north to the Mississauga Transitway Station at Eastgate Parkway. This local transit line will eventually serve as a link between the Mississauga Transitway and the future Dundas Street Rapid Transit line, and its extension may also coincide with increased service frequency.
- Burnhamthorpe Road East Improvements: A Class EA study was completed for future improvements along Burnhamthorpe Road East from Arista Way to Dixie Road by the City of Mississauga. The recommended solution consists of intersection improvements, transit queue jump lanes, enhancements to Burnhamthorpe trail and various cycle/pedestrian bridges across major watercourses, noise mitigation, and streetscape improvements.
- Hanlan Water Project: This project consist of watermain construction along a number of corridors, including Cawthra Road, Dixie Road, Eastgate Parkway, and Tomken Road.
- \quad Silverthorn Feedermain Construction: The Region of Peel is planning to construct a watermain from Silverthorn Pumping Station on Bloor Street to an existing watermain on Queensway. Future consideration may be given to the possibility of coordinating construction schedules (it is slated to be constructed in 2023).
- Multi-Use Trail Construction: A multi-use trail has recently been constructed on the west side of Cawthra Road between Meadows Boulevard and Eastgate Parkway by the City of Mississauga and between Burnhamthorpe and Meadows Boulevard in conjunction with the MCC/Hanlan Watermain project. An additional multi-use trail is proposed as a local connection to the Cawthra BRT Station east of Cawthra Road.

4.2 Traffic Growth Projections

Turning Movement Counts were used to represent existing conditions (base year 2016), as discussed in Section 3.4. This section documents suitable growth rates to be applied to existing traffic volumes in order to estimate 2031 traffic projections.

4.2.1 EMME Model Growth

Northbound and southbound volumes were extracted from the EMME model for both the base year (2011) scenario, as well as the future year (2031) scenario (assuming target mode share for the Hurontario LRT). These volumes were compared at a number of locations along the Cawthra Road corridor, and corresponding annual compound growth rates were calculated. These average growth rates are summarized in Exhibit 4-1.

Exhibit 4-1: Modelled Growth Rates in EMME

Corridor Location	Base (2011) Link Volumes		Future (2031) Link Volumes		Average Annual Compound Growth		
	SB	NB	SB	NB	SB	NB	Link
S of Eastgate	1,071	1,288	1,283	1,473	0.91\%	0.67\%	0.79\%
N of Burnhamthorpe	961	1,099	1,040	1,231	0.40\%	0.57\%	0.48\%
S of Burnhamthorpe	993	721	1,142	870	0.70\%	0.94\%	0.82\%
S of Bloor	1,157	884	1,368	1,066	0.84\%	0.94\%	0.89\%
S of Dundas / N of Queensway	734	1,186	1,026	1,298	1.69\%	0.45\%	1.07\%
N of North Service	668	980	982	1,175	1.95\%	0.91\%	1.43\%
S of South Service	928	1,284	1,014	1,345	0.44\%	0.23\%	0.34\%
TOTALS					0.99\%	0.67\%	0.83\%

The results of the screenline analysis indicates that, on average, total link volumes across all corridor locations analyzed increase based on an average annual compound growth rate of 0.83%.

Since the future year (2031) EMME scenarios incorporate all major road widenings and other major transportation projects (including the Hurontario LRT), this growth rate can be taken to represent both potential background growth through the corridor, as well as diversions and induced demands due to changes along parallel corridors.

4.2.2 Review of Population Growth Forecasts

The City of Mississauga and Region of Peel population and trip-end growth forecasts were considered in the preparation of the traffic growth forecast. Relevant documents are listed as follows:

- City of Mississauga - "Mississauga Official Plan" (2016); "Population, Demographics \& Housing" (2013); and "Moving Mississauga" (2011)
- Region of Peel - "Long Range Transportation Plan" (2012)

Review of the above documents showed that population growth is estimated to be 0.5% to 0.6% per year between 2011 and 2031, while trip ends are forecasted to increase by 0.9% to 1.0% per year during that time.

Comparing these figures with the EMME model results previously described, the average growth rate derived based on the comparison of EMME base and future scenarios - being 0.83\% compounded annually - appears to be reasonable for the development of background forecasts.

4.3 Future Base Operations

Section 4.2 outlined the methodologies used to determine an appropriate background growth rate to apply to future model scenarios. Based on a review of EMME model scenarios, an annual compound growth rate of 0.83% was derived.

This background growth was applied to existing traffic volumes (outlined in Section 3) and carried out to future study year 2031. However, growth was only applied to 'major' movements, which were defined as: a) all through movements along arterial roads, and b) all turning movements between two arterial roads. Growth was not applied to any movements to and from intersecting local roads, as the connecting neighbourhoods/developments are assumed to be fully developed and should not see a significant increase in pass-through traffic.

Analysis was conducted for weekday AM and PM peak hour conditions. Future traffic volumes are illustrated in Exhibit 4-2 and Exhibit 4-3.

Exhibit 4-2: Future (2031) - Volumes from Eastgate Pkwy to Santee Gate

Exhibit 4-3: Future (2031) - Volumes from Silver Creek Blvd to South Service Rd

A summary of overall intersection operations for the future base conditions analysis is provided in Exhibit 4-4. Detailed output of the Synchro analysis provided in Appendix C.

Exhibit 4-4: Future (2031) Base - Signalized Intersection Operations Summary

Cawthra Rd Intersection (Base Condition)	2031 AM Peak			2031 PM Peak Intersection Performance		
	Delay (s)	V/C	LOS	Delay (s)	V/C	
Eastgate Pkwy	F	95.8	1.17	E	74.3	1.15
Meadows Blvd	A	7.1	0.51	A	9.6	0.71
Rathburn Rd	D	44.2	0.85	E	73.9	1.11
Burnhamthorpe Rd	F	81.2	1.14	F	105.6	1.39
Bloor St	E	62.4	0.99	E	76.4	1.12
Silver Creek Blvd	C	25.6	0.84	C	26.8	0.84
Ramp to Dundas	D	38.7	0.70	C	34.0	0.79
Queensway	E	58.8	0.96	F	118.5	1.22
Tedwyn Dr	A	8.5	0.60	A	9.4	0.65
North Service Rd	D	40.1	1.02	F	140.6	1.44
South Service Rd	E	67.3	1.21	E	64.0	1.10

Overall LOS for each signalized intersection, as per the future base operations analysis, is illustrated in Exhibit 4-5.

Exhibit 4-5: Future (2031) Base - Signalized Intersection LOS Diagram

5 Intersection Operations

This section provides discussion on the operational and safety performance of the signalized and unsignalized intersections along the Cawthra Road corridor. Overall Level of Service (LOS) between existing and future scenarios are stated and compared. For each signalized intersection, potential operational improvement measures are discussed; the performance of these measures is further outlined in Section Error! Reference source not found..

5.1 Signalized Intersections

The existing signal control strategy for Cawthra Road is typically based on a 140 second cycle length (120 second cycle length for intersections south of Queensway, including QEW ramps, North and South Service Roads, and Tedwyn Drive) with protected-permissive turn phases provided at intersections when and where necessary. At minor intersections, side street green time is generally kept to the minimum required for pedestrian clearances to prioritize progression north-south.

5.1.1 Eastgate Parkway

Existing Conditions: The Eastgate Parkway intersection is a gateway intersection with the west and north legs providing direct access to and from Highway 403. The intersection operates at LOS E in both the AM and PM peak hours. Opposing through and left turn volumes are relatively high and compete for available green time. The northbound left-turn movement has had a high occurrence of left-turn collisions which appear to result from misjudging gaps in southbound traffic exiting from Highway 403. It is expected that southbound traffic speeds remain high despite a ' $50 \mathrm{~km} / \mathrm{h}$ ahead' posted speed limit sign in place upstream of the intersection.
Future Conditions: Intersection operations are anticipated to worsen to LOS F (v/c = 1.17) during the AM peak hour with the EBT, NBTR, and SBL movements all operating overcapacity. In the PM peak hour, overall intersection operations are expected to remain at LOS E (v/c = 1.15) with the EBL, WBT, NBL, and SBT all operating overcapacity.

Exhibit 5-1: Eastgate Pkwy Configuration and Potential Changes

* PP - Permissive Protected; FP -Fully Protected; () denotes assumed phasing

Potential Improvements:

- Provide an exclusive NBR turn lane to improve northbound traffic operations. The NBTR movement currently operates at LOS $\mathrm{F}(\mathrm{v} / \mathrm{c}=1.06)$ during the AM peak hour and is expected to worsen to LOS $\mathrm{F}(\mathrm{v} / \mathrm{c}=1.32)$ with the addition of background growth. The forecast northbound right turn demands are 139 veh/hr during the 2031 AM peak hour and $65 \mathrm{veh} / \mathrm{hr}$ during the PM peak hour.
- Provide a fully protected NBL phase to reduce conflicts between northbound left and southbound through volumes, identified as a concern during the traffic safety review. The forecast northbound left turn demands are 224 veh/hr during the 2031 AM peak hour and 172 veh/hr during the PM peak hour. The option of providing a dual NBL (in conjunction with protected only left turn phasing) to minimize green time was considered; however results in significant impacts associated with widening Cawthra Road (including the existing BRT underpass north of the intersection) and therefore was not carried forward.

5.1.2 Meadows Boulevard

Existing Conditions: The intersection performs well overall, operating at LOS A in the AM and PM peak hours. However, the east approach movements experience significant delays as green phases are prioritized for the heavy north/south movements. Any increases to green phases for the minor street would come at the expense of operations on the Cawthra Road approaches.

Future Conditions: Intersection operations remain at LOS A based on 2031 demands (v/c = 0.51 and 0.71 during the AM and PM peak hours respectively).

Potential Improvement: No improvements required.

5.1.3 Rathburn Road

Existing Conditions: The Rathburn Road intersection operates at LOS C in the AM peak hour and LOS D in the PM peak hour. All movements operate below capacity.

Future Conditions: Intersection operations are expected to worsen to LOS D (v/c = 0.85) and LOS E (v/c = 1.11) during the 2031 AM and PM peak hours respectively. In the AM peak hour, all movements remain below capacity. In the PM peak hour, critical movements will include SBTR, WBTR, and NBL.

Exhibit 5-2: Rathburn Rd Configuration and Potential Changes

* PP - Permissive Protected; FP -Fully Protected; () denotes assumed phasing

Potential Improvements:

- Provide an exclusive SBR turn lane to improve southbound traffic operations. During the 2031 PM peak, the SBTR operates at LOS $F(\mathrm{v} / \mathrm{c}=1.12)$. The southbound through and right turn demands are $1518 \mathrm{veh} / \mathrm{hr}$ and $151 \mathrm{veh} / \mathrm{hr}$ respectively. This improvement is feasible within the available right-of-way and remains offset from adjacent houses.
- Given the heavy westbound demands during the PM peak (76 veh/hr right and 1004 veh/hr thru), an exclusive WBR turn lane was considered. However, given the constraints of the existing right of way (compared to limited benefits), the option of an exclusive right turn lane was not carried forward.
- During the 2031 PM peak, the NBL movement (252 veh/hr) operates overcapacity (v/c 1.14), however is opposed by a heavy southbound through volume (1518 veh/hr). No geometric improvements are recommended.

5.1.4 Burnhamthorpe Road

Existing Conditions: The Burnhamthorpe Road intersection operates at LOS $D(\mathrm{v} / \mathrm{c}=1.0)$ during the AM and LOS $E(v / c=1.12)$ during the $P M$ peak hour. Critical movements include the WBL during the AM peak hour, and the WBT, NBL, and SBT movements during the PM peak hour. The dominant collision type at this intersection is turning related collisions, with the majority of conflicts occurring between the SBL and NBT movements (a movement that exceeds 90 degrees due to the existing intersection skew). The intersection was recently reconstructed during which channelized right turn lanes were replaced with dedicated right-turn lanes.

Future Conditions: Intersection operations are expected to worsen to LOS E (v/c 1.14) and LOS F $(v / c=1.39)$ during the AM and PM peak hours respectively. In the AM peak hour, critical movements will include EBT, WBL, NBL, and NBT. In the PM peak hour, critical movements will include WBL, WBT, NBL, and SBT.

Exhibit 5-3: Burnhamthorpe Rd Configuration and Potential Changes

* PP - Permissive Protected; FP -Fully Protected; () denotes assumed phasing

Potential Improvements:

- The intersection is very congested on all approaches, and a number of geometric issues - including the presence of major hydro lines on the south and west boulevards, and the unnatural skew that the intersection possesses - limits the options available for improving operations. The intersection was recently reconstructed, and the resulting configuration represents the most ideal configuration from a multi-modal transportation perspective.
- Provide a fully protected NBL phase given the heavy NBL demands (318 veh/hr during 2031 PM peak), difficultly for NBL vehicles to perceive southbound through vehicles, and greater than 90 degree turning angle due to the significant intersection skew angle. The option of providing a dual NBL (in conjunction with protected only left turn phasing) was considered to minimize green time; however results in significant impacts (given property constraints and hydro lines along the west boulevard) and therefore was not carried forward.
- Provide a fully protected SBL phase to address the high instance of SBL and NBT conflicts, and in light of the greater than 90 degree turning angle.
To address concerns associated with the intersection skew and poor level of service, consideration was also given to reconfiguring the intersection as a Multi-lane Roundabout.

The capacity of a roundabout is quite varied as it is dependent on both the number of vehicles entering the roundabout and the number of circulating vehicles (as well as geometric properties). This intersection has multiple approaches with ~ 1600 to 1700 veh/hr demands versus a capacity of 1200 to 1600 veh/hr. The right-turn volume is high enough that by-pass lanes are effective in increasing the capacity, but not enough for a two-lane roundabout to be able to handle the remaining through/left traffic.

A traffic flow worksheet, which shows high-level results based on the HCM 2010 methodology is provided in Appendix D2. Volume/ Capacity (v/c) ratios are between 1.23 and 2.32 for a double-lane roundabout (2 entering \& circulating lanes).

To supplement the above, the results of an ARCADY 8 analysis completed for a two-lane roundabout configuration with by-pass lanes on all approaches is provided below. For the purposes of the analysis, no reductions are included for capacity, heavy vehicles, and/or pedestrians - all of which would artificially increase the theoretical capacity of the roundabout.

	AM							PM						
	Queue (PCU) (PCU)	Delay (s)	RFC	LOS	Junction Delay (s)	Junction LOS	Network Residual Capacity	Queue (PCU)	Delay (s)	RFC	LOS	Junction Delay (s)	Junction LOS	Network Residual Capacity
	Cawthra \& Burnhamthorpe - Scenario 1													
Burnhamthorpe EB	558.51	2161.56	1.67	F	1133.95	F	$\begin{gathered} -38 \% \\ \text { [Canthra } \\ \text { NB] } \end{gathered}$	6.10	24.47	0.87	c	1612.14	F	-45% [Cavthra SB]
Cawthra NB	413.25	1269.24	1.48	F				159.70	429.80	1.26	F			
Burnhamthorpe WB	7.77	32.37	0.90	D				770.82	2868.94	1.80	F			
Cawthra SB	145.88	403.95	1.25	F				661.89	2278.50	1.74	F			

The above results confirm that roundabout is not feasible from a traffic operations perspective, the intersection volumes are too high for a roundabout of any size to function effectively.

5.1.5 Bloor Street

Existing Conditions: The Bloor Street intersection operates at LOS D during the AM and PM peak hours. All movement operate under capacity. Collisions at the intersection are largely rearend type; likely due to excessive speeding along this section of the corridor. The safety analysis also notes that the majority of rear-end collisions are in the northbound direction which is the only direction without a dedicated right turn lane.
Future Conditions: Intersection operations are expected to worsen to LOS E (v/c=0.99) and LOS E (v/c = 1.12) during the AM and PM peak hours respectively. In the AM peak hour, critical movements will include the NBTR. In the PM peak hour, critical movements will include WBL, WBT, NBL, and NBTR.

Exhibit 5-4: Bloor St Configuration and Potential Changes

[^0]
Potential Improvements:

- Provide an exclusive NBR turn lane to accommodate right turn demands and reduce the number of slowing vehicles in the through lane and thereby assist in reducing rearend collisions. Based on the existing intersection configuration, the NBTR will operate at LOS $\mathrm{E}(\mathrm{v} / \mathrm{c}=1.04)$ during the 2031 AM peak hour and $\operatorname{LOS} \mathrm{F}(\mathrm{v} / \mathrm{c}=1.12)$ during the PM peak hour. The corresponding northbound right turn demands are $212 \mathrm{veh} / \mathrm{hr}$ and 172 veh/hr respectively.
- Remove channelized right turns to improve pedestrian safety and reduce vehicular conflicts.
- Consideration was given to potential re-configuration of the westbound approach (Bloor Street) to provide a dual WBL however was not carried forward. Average intersection delays remained largely unchanged in the AM peak and increased in the PM peak hour (analysis is provided in Appendix D2, Case I)

5.1.6 Silver Creek Boulevard

Existing Conditions: The Silver Creek intersection operates at LOS C during the AM and PM peak hours. Although a three-legged intersection (north, south \& west legs) there are two driveways on the east side. A southbound left-turn lane is available to access these minor driveways and this movement does not affect signal phasing. The safety analysis indicates that the predominant type of collision at the intersection is southbound rear-end collisions, which may stem from drivers accelerating through the intersection to reach the Dundas Street ramp.

Future Conditions: Intersection operations are expected to remain at LOS C during the AM and PM peak hours. All movements will continue to operate well below capacity. The 2031 PM peak NBL demands ($358 \mathrm{veh} / \mathrm{hr}$) are expected to extend beyond the available left turn lane storage.
Potential Improvements: Apart from line painting modifications to increase the NBL storage lane length, no improvements are required.

5.1.7 Ramp to Dundas Street

Existing Conditions: The Dundas Ramp intersection operates at LOS B during the AM peak hour and LOS C during the PM peak hour. The intersection operates under split phasing for east-west movements, given the low demand on the east leg. The safety analysis indicates a visible trend of rear-end collisions immediately south of the ramp as vehicles merge into the southbound through lanes on Cawthra Road. It also appears that NBL turn vehicles may be misjudging gaps in southbound traffic likely due to the higher speeds along the downhill grade through the intersection.

Future Conditions: Intersection operations are anticipated to slight worsen to LOS D (v/c = $0.70)$ during the 2031 AM peak hour and LOS C $(\mathrm{v} / \mathrm{c}=0.79)$ during the PM peak hour. All movements operate below capacity.

Potential Improvements:

- Given concerns regarding the high volume merge of demands from the EBR channelized right turn onto Cawthra Road, consideration was given to reconfiguring the existing right turn channel as a "smart channel', to establish a clearer yield point and better sight-lines for drivers attempting to merge into the SBT lane. Additionally, this improvement is desirable from an active transportation standpoint, as it reduces potential conflicts between vehicles and pedestrians/bicycles.

A subsequent geometric feasibility review by the Region identified difficulties in accommodating a 'smart channel configuration' and therefore it is expected that the
existing channelized configuration will be maintained; however pavement markings are to be updated to clarify lane designations.

- Provide a fully protected NBL phase to reduce conflicts between northbound left and southbound through volumes, identified as a concern during the traffic safety review.

5.1.8 The Queensway

Existing Conditions: The Queensway intersection operates at LOS D in the AM peak hour and LOS F in the PM peak hour. The dual SBL and WBL movements operate under protected phasing only. During the PM peak hour, the EBL, WBTR, NBL, and SBTR movements all operate over capacity. Although three lanes are provided through the intersection in the eastbound and westbound directions, utilization of the curb lane is lower given the presence of downstream lane drops immediately beyond the intersection. A similar configuration also exists in the northbound direction on Cawthra Road; however for analysis purposes has been modelled as two through lanes plus an exclusive right turn lane.
Future Conditions: Based on 2031 demands, the intersection is expected to operate at LOS E $(\mathrm{v} / \mathrm{c}=0.96)$ during the AM peak hour and LOS $F(\mathrm{v} / \mathrm{c}=1.22)$ during the PM peak hour. In the AM peak hour, all movements will operate under capacity. In the PM peak hour, critical movements will include EBL, WBTR, NBL, SBL, and SBTR. The most critical of these is the NBL (299 $\mathrm{veh} / \mathrm{hr})$ operating at LOS $\mathrm{F}(\mathrm{v} / \mathrm{c}=2.47)$.

Exhibit 5-5: Queensway Configuration and Potential Changes

* PP - Permissive Protected; FP -Fully Protected; () denotes assumed phasing

Potential Improvements:

- Provide a fully protected dual NBL to accommodate future demands, limit queuing beyond Melton Road, and reduce the probability of turning movement collisions at the Queensway intersection, as motorists would no longer be attempting to turn through gaps in opposing traffic.
- Remove channelized right turns to improve pedestrian safety and reduce vehicular conflicts. Where the channelized right turn configuration cannot be removed due to existing constraints (i.e. south-west quadrant where utility impacts will be significant), it is recommended that a 'smart channel' configuration be provided.
- Provide a fully protected (dual) EBL phase (consistent with all other approaches) to improve pedestrian safety and reduce vehicular conflicts. As a secondary improvement measure, also consider converting the existing shadow left turn buffer lane to second left turn lane.
- Given the heavy northbound right turn demands (i.e. 526 veh/hr during the 2031 AM peak) and geometry which limits the effectiveness of the curb lane as a shared thru/right
turn lane, it is recommended that the outer lane be converted to an exclusive right turn lane in conjunction with removing the northbound right turn channelization (noted above).
- Downstream eastbound and westbound curb lanes are relatively short, and therefore are not being utilized to their fullest extent. Consideration was given to converting the shared thru/right turn lanes along Queensway to an exclusive right turn lane. However, further analysis confirmed that constraining the eastbound and westbound movements to two through-lanes would result in a significant deterioration of operations in the PM peak hour (refer to analysis in Appendix D2, Case III), and therefore was not carried forward.

To improve lane utilization and downstream traffic operations, extension of the eastbound and westbound curb lanes should be considered if/when road improvements are separately undertaken along the Queensway in the future.

5.1.9 Tedwyn Drive

Existing Conditions: The intersection operates at LOS A in both the AM and PM peak hours. The east approach movements experience significant delays, as green phases are prioritized for the heavy north/south movements.

Future Conditions: Intersection operations remain at LOS A (v/c $=0.60$ and 0.65 in both the AM and PM peak hours, respectively). All movements operate well below capacity.

Potential Improvements: No improvements are required.

5.1.10 North Service Road

Existing Conditions: The North Service Road intersection operates at LOS C in AM peak hour and LOS F in the PM peak hour. The safety analysis indicates that many of the collisions are due to loss of control given the tight turn radii on the eastbound and westbound approaches.
Future Conditions: Intersection operations are expected to worsen to LOS $D(v / c=1.02)$ during the 2031 AM peak hour, and LOS F (v/c = 1.44) during the PM peak hour. In the AM peak hour, the WBL movement operates at/overcapacity. In the PM peak hour, overcapacity movements will include all westbound (WBL, WBTR), northbound (NBL, NBTR), and southbound (SBL, SBTR) movements.

It should be noted that traffic volumes are expected to change with the future reconstruction of the highway interchange at Dixie Road and a reduction in WBL demands is likely given the addition of an access to the QEW westbound lanes at Dixie Road.
Exhibit 5-6: North Service Rd Configuration and Potential Changes

[^1]
Potential Improvements:

- Provide an exclusive NBR turn lane at this intersection (NBR demands $=200 \mathrm{veh} / \mathrm{hr}$ during the AM peak and 179 veh/hr during the PM peak).
- Consideration was also given to providing an exclusive WBR turn lane; however was not carried forward due to right-of-way constraints and potential encroachment to the adjacent utility corridor.
- Enhance signing on east and west approaches to warn drivers of the sharpness of curve and signalized intersection ahead.

5.1.11 South Service Road

Existing Conditions: The South Service Road intersection operates at LOS D in AM peak hour and LOS C in the PM peak hour. The safety analysis indicates that many of the collisions are due to loss of control given the tight turn radii on the eastbound and westbound approaches.
Future Conditions: Intersection operations are expected to worsen to LOS E (v/c=1.21 and v/c 1.10 during both the 2031 AM and PM peak hours respectively). In the AM peak hour, overcapacity movements include the EBL and SBL. In the PM peak hour, the EBL, SBL, and SBTR operate at/overcapacity. Southbound thru/right turn demands are heaviest during the PM peak, during which period the SBTR movement is expected to operate at LOS E ($\mathrm{v} / \mathrm{c}=1.10$), reflecting the need for an exclusive right turn lane.

Exhibit 5-7: South Service Rd Configuration and Potential Changes

* PP - Permissive Protected; FP -Fully Protected; () denotes assumed phasing

Potential Improvements:

- Provide an exclusive SBR turn lane to accommodate the heavy southbound right turn and thru lane volumes and improve overall intersection operations.
- Enhance signing on east and west approaches to warn drivers of the sharpness of curve and signalized intersection ahead.

5.2 Unsignalized Intersections

A total of eight unsignalized intersections were modelled along the study area. Each of these intersections operate as a two-way stop, with the minor approaches stop controlled and major approaches (northbound and southbound on Cawthra Road) operating as free flow movements. None of the minor approaches are restricted to right-in/right-out movements.

The heavy NBT and SBT volumes operate under free flow conditions (LOS A), with left-turn movements from Cawthra Road experiencing limited delays (i.e. LOS C or less). However, while
approach volumes on the minor intersecting roads are very low (and well below capacity), these vehicles must wait for sufficient gaps in traffic in order to turn onto Cawthra Road. As such, some of these movements experience long delays - particularly left-turn movements that must manoeuvre through two directions of heavy through traffic. Exhibit 5-8 summarizes the average approach delay and corresponding LOS for each minor approach, for both existing and future base conditions.

Exhibit 5-8: Unsignalized Intersection Operations - Existing and Future Comparison

Unsignalized Intersection	Approach	Approach Delay (Sec) \& Corresponding LOS			
		AM Peak Hour		PM Peak Hour	
		2016 Existing	2031 Base	2016 Existing	2031 Base
Hassall Rd	EB	15.8 (C)	18.3 (C)	13.3 (B)	15.1 (C)
Runningbrook Dr	WB	24.7 (C)	30.8 (D)	18.9 (C)	21.7 (C)
Breckenridge Rd	EB	33.1 (D)	41.5 (E)	24.7 (C)	29.8 (D)
	WB	22.9 (C)	27.9 (D)	19.5 (C)	22.7 (C)
Hyancinthe Blvd	EB	24.8 (C)	26.7 (D)	19.4 (C)	21.3 (C)
Schomberg Ave	EB	14.8 (B)	16.3 (C)	19.9 (C)	23.5 (C)
	WB	15.4 (C)	16.9 (C)	16.4 (C)	19.4 (C)
Santee Gt	EB	15.3 (C)	17.9 (C)	15.1 (C)	17.0 (C)
Needham Ln	EB	196.9 (F)	396.0 (F)	342.3 (F)	4114.5 (F)
	WB	594.1 (F)	1238.7 (F)	93.6 (F)	174.2 (F)
Orwell St	EB	25.9 (D)	32.1 (D)	24.2 (C)	29.6 (D)
Melton Rd	WB	15.8 (C)	15.4 (C)	14.9 (B)	15.0 (B)

Only Needham Lane and Orwell Street are wide enough to accommodate separate left-turn and right-turn lanes (although separate are not explicitly delineated at present). For all other approaches, left-turning and right-turning vehicles share a single lane. This presents some additional delays to right-turn movements, as these some of vehicles will be subject to additional delays incurred by left-turning vehicles when possibly otherwise free to make the right-turn movement. However, for the majority of unsignalized intersections, delays are acceptable.

Note: While delays for Needham Lane intersection are expected to be significant, the output delays shown in Synchro are implausible. The EBL and WBL volumes indicated in existing TMC data shows that vehicles are able to make these movements in some manner, and so it is possible that the Synchro model has not accurately reflected the presence of gaps in traffic along this section. Additional field studies can be conducted to observe true operating conditions and average delays experienced at this location.

Potential Improvements:

A signal warrant justification was completed for both Needham Lane and for Orwell Avenue, based on major and minor approach volumes. The TMC data was used, with an annual compound growth rate of 0.83% applied to the NBT and SBT movements to project background growth out to year 2031. The signal warrant calculations are provided in Appendix D4, and indicate that the warrants for traffic signals are not met for either of these intersections.

6 Potential Improvements

The future (2031) mitigated scenario reflects the potential improvement measures outlined in Section 5 . Further design review is required to ensure that certain improvement measures are not limited by other factors such as constructability and cost.

6.1 General Corridor

Potential Widening of Cawthra Road (QEW to Queensway)

The south section of Cawthra Road, between QEW Off-Ramp (westbound terminal) and the Queensway, currently operates with a lane imbalance as there exist three though-lanes in the southbound direction compared to only two in the northbound direction. Although traffic volumes in the northbound direction could benefit from a third northbound through lane along this south corridor section, the corridor the right-of-way is constrained and such a lane addition would result in induced demands along the south corridor section, which would cause significant bottlenecking where the subsequent lane reduction occurs (the central and north sections of the corridor already operate near or at capacity, and cannot accommodate these additional demands). As such, any potential benefits to traffic operations in the south corridor section need to be weighed against the worsening of operations further north along the corridor.

Furthermore, operational benefits to the south corridor section as a result of lane widening are unlikely to be as significant as they might appear. Cawthra Road represents a direct link and logical travel route between Highway 403 and QEW. For this specific reason, and given the volumes served by these two major highways, it can be argued that Cawthra Road will always operate near or at capacity regardless of any widening that is undertaken. Any additional capacity introduced along Cawthra Road will result in subsequent induced demands until this new capacity is again reached.
Based on the above, the addition of a third northbound through lane from the QEW Off-Ramp (westbound terminal) to north of the Queensway is not recommended from a traffic operations perspective.

6.2 Signalized Intersections

Traffic volumes for the future (2031) mitigated scenario are the same as those for the future (2031) base scenario (as outlined in Section 4.3). However, the potential improvement measures outlined in Section 5 were reflected in the Synchro model.
A summary of overall intersection operations for the future mitigated conditions analysis is provided in Exhibit 6-1. Complete tables showing critical movements (as per the Region of Peel TIS guidelines) and detailed output of the Synchro analysis provided in Appendix D3.

Exhibit 6-1: Future (2031) Mitigated - Signalized Intersection Operations Summary

Cawthra Rd Intersection (Mitigated Condition)	2031 AM Peak Intersection Performance			2031 PM Peak Intersection Performance		
	F	Delay (s)	V/C	LOS	Delay (s)	V/C
Meadows Blvd	A	61.3	1.20	E	82.6	1.17
Rathburn Rd	D	41.6	0.84	E	58.6	1.11
Burnhamthorpe Rd	F	80.5	1.16	F	122.8	1.29
Bloor St	E	57.2	0.95	E	63.4	1.09
Silver Creek Blvd	C	25.5	0.84	C	28.3	0.85
Ramp to Dundas	D	35.9	0.82	C	32.9	0.79
Queensway	D	53.9	0.92	F	89.0	1.09
Tedwyn Dr	A	8.5	0.60	A	9.4	0.65
North Service Rd	D	36.3	0.98	F	133.3	1.44
South Service Rd	E	66.9	1.21	D	38.7	1.04

Overall LOS for each intersection, as per the future mitigated operations analysis, is illustrated in Exhibit 6-2.

Exhibit 6-2: Future (2031) Mitigated - Signalized Intersection LOS Diagram

Assessment of Mitigation Measures

Exhibit 6-3 provides a comparison of signalized intersection operations between the three analysis scenarios based on Intersection Delay. Intersection Delay is a measure of the overall average delay experienced at the intersection, calculated by taking a volume weighted average of all total delays for every intersection movement. Similarly, intersection V/C is a volume weighted average of all volume/capacity ratios for every intersection movement.

Exhibit 6-3: Signalized Intersection Operations - Comparison with Base Conditions

Signalized Intersection	Intersection Delay (Sec)					
	2016 Existing		2031 Base		2031 Mitigated	
	AM	PM	AM	PM	AM	PM
Eastgate Pkwy	60.7	56.8	95.8	74.3	81.3	82.6
Meadows Blvd	8.8	5.6	7.1	9.6	6.7	9.6
Rathburn Rd	32.1	54.1	44.2	73.9	41.6	58.6
Burnhamthorpe Rd	52.2	59.7	81.2	105.6	80.5	122.8
Bloor St	49.2	43.5	62.4	76.4	57.2	63.4
Silver Creek Blvd	21.1	25.4	25.6	26.8	25.5	28.3
Ramp to Dundas	14.3	30.2	38.7	34.0	35.9	32.9
Queensway	48.6	87.2	58.8	118.5	53.9	89.0
Tedwyn Dr	7.9	8.5	8.5	9.4	8.5	9.4
North Service Rd	31.1	85.9	40.1	140.6	36.3	133.3
South Service Rd	42.8	31.7	67.3	64.0	66.9	38.7
		Total	529.7	733.1	494.3	656.7
			Comparison with Base Condition		$\begin{gathered} 7.5 \% \\ \text { reduction } \end{gathered}$	$\begin{gathered} 9.1 \% \\ \text { reduction } \\ \hline \end{gathered}$

Comparing the existing scenario with the two future scenarios, it is can be observed that delays output from the future models are significantly greater than those output from the existing model due to increased traffic volumes through the corridor. Operational improvements at a few intersections were largely due to the optimization of signal phasing/timing splits.

Benefits of improvements when comparing the future mitigated scenario against the future base scenario are less clear. In most cases the benefits to operations due to geometric or phasing improvements are reflected in both the AM and PM peak conditions (although relatively minor). However in several cases, mitigation measures (i.e. fully protected left turn phasing to address safety concerns at Eastgate Parkway and Burnhamthorpe Road) may benefit operations during one peak hour (i.e. AM or PM) at the expense of operations during the other peak hour

6.3 Additional Mitigation Measures

Pedestrian Crossing Signal

Traffic signals along Cawthra Road are typically spaced at less than 400m. Exceptions include:

- Burnhamthorpe Road to Bloor Street (separated by 1055m). In this instance a pedestrian signal has recently been installed at Breckenridge Road, a location which connects to local parks and schools.
- Dundas Street to Queensway (separated by 1115 m). No direct access is provided to Cawthra Road within the northern segment between Dundas Street and Needham Lane (525m).

Given the large gap between adjacent signal controlled pedestrian crossings, the warrants for an Intersection Pedestrian Signal (IPS) was reviewed at Needham Lane. Based on the results (provided in Appendix D4), an IPS is not warranted; however it is recommended that this location be monitored for an Intersection Pedestrian Signal (IPS) in the future, similar to that recently installed on Cawthra Road at Breckenridge.

Protected Signal Phasing

As part of the Active Transportation analysis, a review was completed to identify signalized intersections where protected phasing or separate phases would be preferred from an Active Transportation perspective. Findings are documented separately in the Active Transportation Report. A key criteria relates to exposure and is a function of conflicting volume. Below is a summary of locations with heavier right and left turning vehicular volumes that warrant consideration of a fully protected left turn phase or right-turn-on-red (RTOR) restriction.

Exhibit 6-4: Protected Signal Phasing or Turn Lane Restrictions

Signalized Intersection (Cyclist Crossing)		Consideration of Protected Phase or RTOR Restriction ${ }^{(1)}$				
		West Side		East Side		Comments
		NBL	SBR	SBL	NBR	
Eastgate Pkwy		(P)	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	- Fully protected NBL recommended. Fully protected SB left can be accommodated with minimal delays.
Meadows Blvd		$\sqrt{ }$	--	--	--	- Currently a shared SBR lane, so no opportunity to introduce a protected right turn
Rathburn Rd		$\sqrt{ }$	$\sqrt{ }$	--	--	- Consider fully protected NBL to avoid conflicts with cyclists
Burnhamthorpe Rd		(P)	$\sqrt{ }$	(P)	--	- Fully protected NBL recommended. Fully protected SBL also recommended to mitigate to address safety concerns.
Bloor St		$\sqrt{ }$	--	$\sqrt{ }$	$\sqrt{ }$	
Silver Creek Blvd		$\sqrt{ }$	--	--	--	
Ramp to Dundas		(P)	$\sqrt{ }$	--	--	- Fully protected NBL recommended.
Queensway		(P)	--	P	$\sqrt{ }$	- Fully protected NBL and SBL provided in conjunction with dual left turns
Tedwyn Dr		$\sqrt{ }$	--	--	--	- Currently a shared SBR lane, so no opportunity to introduce a protected right turn
North Service Rd		$\sqrt{ }$	--	$\sqrt{ }$	$\sqrt{ }$	
South Service Rd	N/A	N/A	N/A	N/A	N/A	

(1) Guidance with respect to protected phases, based on volumes exceeding key threshold levels as outlined in on MassDOT's Separated Bike Lane Planning \& Design Guide provides
(2) '(P)' reflects (new) protected left turn only phase already included with mitigation condition
(3) ' V ' reflects movements where protected phase is to be considered, in the future.

It is noted that, a fully protected NBL left turn phasing is already included as part of the mitigation proposed at Eastgate Parkway, Burnhamthorpe Road, Dundas Ramp, and Queensway intersections. In each case, it will also improve safety to pedestrians and cyclists. At the remaining locations (identified as ' $\sqrt{ }$ ') protected phase is to be considered in the future. Since providing these improvements can introduce significant delays to turning vehicles, it is recommended that the introduction of these phases be based on monitoring of operations in the future.

7 Conclusions and Recommendations

Based on the finding of the study and comparison of the Future Base and Future Mitigated scenarios presented in Section 6.3, as well as the additional mitigation traffic signal and signal phasing considerations presented in Section 6.4, the improvement measures as outlined in Exhibit 7-1 are recommended.

Exhibit 7-1: Summary of Improvement Recommendations

| Intersection | Improvement | Notes on Constructability |
| :--- | :--- | :--- | :--- |

These improvements (recommended from a traffic operations and safety standpoint) are subject to further review and cost analysis, as part of the subsequent preliminary design development and evaluation as part of the overall Class EA Study.

APPENDIX A

TRAFFIC SAFETY ASSESSMENT

Memorandum

To/Attention	Allan Ortlieb	Date	December 10, 2013 Revision 1
From	Matt Colwill	Project No	35245
cc	IBI Group	Steno	ar

Subject Cawthra Road Pre-EA - Safety Review

Safety Review

This memorandum presents a review of traffic safety along the Cawthra Road corridor between Eastgate Parkway/Highway 403 and the QEW South Service Road. The Region of Peel provided historical collision data for the study area, summarizing the reported intersection and midblock collisions along the corridor for the five-year period from January 1, 2008 through December 31, 2012.

Along with the collision data, vehicle speed, counts and classification data were provided for consideration as part of the safety review. The speed, volume and classification data were collected on September 10, 11 and 12, 2012 at the following six locations:
i. $\quad 100 \mathrm{~m}$ north of Arbor Street;
ii. $\quad 100 \mathrm{~m}$ north of Tedwyn Drive;
iii. 200 m north of Queensway East;
iv. $\quad 500 \mathrm{~m}$ north of Silver Creek Boulevard;
v. $\quad 200 \mathrm{~m}$ north of Bloor Street; and
vi. $\quad 1000 \mathrm{~m}$ north of Burnhamthorpe Road.

Safety performance analysis was provided for an earlier study period spanning from 2005 to 2009. This information provided a benchmark upon which the observed collision history for the current analysis period could be compared.

Analysis and findings related to the collision and speed data are presented in the following sections.

Overall Collision Analysis

Over the five-year analysis period, a total of 1007 reported collisions ${ }^{1}$ were reviewed. Exhibit 1 illustrates the annual distribution of collisions over the analysis period, with a mean of 201 collisions per year.

[^2]Exhibit 1: Five-year Collision Distribution

Year	2008	2009	2010	2011	2012	Total
Collisions	175	190	223	235	184	1007

Collision data obtained by IBI Group included all signalized intersections and midblock segments along Cawthra Road within the study area. There were no reported collisions the following intersections:

- Intersection of Schomberg Avenue and Cawthra Road;
- Midblock between Hyacinthe Boulevard and Schomberg Avenue;
- Midblock between Queensway East and Melton Drive; and
- Midblock between Melton Drive and Tedwyn Drive.

Exhibit 2 displays the distribution of collisions along Cawthra Road, divided into midblock and intersection collisions. It shows that most of the collisions (890 of 1007) occurred at or near intersections, particularly the intersections at Eastgate Parkway, Bloor Street, Queensway East, North Service Road and South Service Road. The remaining 117 collisions occurred between intersections. Two notable midblock locations were 3643 Cawthra Road, a plaza driveway immediately south of Burnhamthorpe Road East, where 16 collisions occurred, and 655 Queensway East (with access from Cawthra Road immediately north of Queensway East), a commercial driveway, with 35 collisions reported in the five-year study period.

Analysis of each notable intersection and midblock segment is provided later in this memorandum.

IBI Group

Exhibit 2: Distribution of Collisions along Cawthra Road Corridor

Intersection	Collision Frequency	Midblock	Collision Frequency
Eastgate Parkway/Highway 403	128		
Meadows Blvd	17	Eastgate Parkway/Highway 403 and Meadows Blvd	2
		Meadows Blvd and Rathburn Road	9
Rathburn Road	37		
Burnhamthorpe Road	169	Rathburn Road and Burnhamthorpe Road East	6
		Burnhamthorpe Road and Hassall Road	16
Hassall Road	2		
		Hassall Road and Runningbrook Drive	2
Runningbrook Drive	7	Runningbrook Drive and Breckenridge Road	1
Breckenridge Road	5		
		Breckenridge Road and Hyacinthe Blvd	1
Hyacinthe Blvd	1	Hyacinthe Blvd and Schomberg Avenue	0
Schomberg Avenue	0		
		Schomberg Avenue and Bloor Street	6
Bloor Street	84		
Santee Gate	6	Bloor Street and Santee Gate	2
		Santee Gate and Silver Creek Blvd	4
Silver Creek Blvd	36	Silver Creek Blvd and Dundas Street Ramp	3
Dundas Street Ramp	37		
		Dundas Street Ramp and Needham Lane	3
Needham Lane	8	Needham Lane and Orwell Street	7
Orwell Street	16		
		Orwell Street and Queensway East	45
Queensway East	123	Queensway East and Melton Drive	0
Melton Drive	9		
		Melton Drive and Tedwyn Drive	0
Tedwyn Drive	23		3
North Service Road	61	Tedwyn Drive and North Service Road	
		North Service Road and QEW Westbound Ramp	1
QEW Westbound Ramp	34	QEW Westbound Ramp and QEW Eastbound Ramp	3
QzW Eastbound Ramp		QEW Eastbound Ramp and South Service Road	3
South Service Road	76		

IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada

Collision Classification

Exhibit 3 presents a distribution of collisions based on severity. As regional collision distributions were not available for comparison, an analysis of collision over-representation could not be performed. However, as anticipated, the collisions were primarily classified as property damage only (P.D. Only). Non-fatal injury collisions (143) largely resulted from rear end (53) and turning movement (53) collisions. Two fatal collisions occurred along the corridor between 2008 and 2012, both of which were at intersections. These are discussed within the analysis for the intersections at Bloor Street and at the westbound QEW ramp.

Exhibit 3: Corridor Collision Distribution by Severity

Fatal	Non-Fatal Injury	Non-Reportable	P.D. Only
2	143	7	855

Initial Impact Type

Exhibit 4 shows the distribution of collisions by initial impact type. The dominant collision type along Cawthra Road, as anticipated of an urban commuter corridor, is rear-end collisions (45%); these are concentrated at the intersections (408 of 451 rear-end collisions), and generally occurred during periods of higher traffic demand. Rear-end collisions tended to be more common at intersections with significant queuing.

After rear-end collisions, the next most common impact type along the corridor was found to be turning movement collisions. This collision type is also concentrated at the corridor intersections, and is also likely to be influenced by traffic congestion. As gaps between vehicles become smaller and less frequent, and delays increase, drivers will tend to attempt more aggressive turning movements, and turning collisions subsequently tend to increase in frequency. Turning movement collisions represent approximately 33% of all collisions along the corridor, with a significant number reported at the intersections of Cawthra Road at Queensway East and Cawthra Road at Burnhamthorpe Road East, as discussed later within the intersection analysis.

IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada

Exhibit 4: Corridor Collision Distribution by Initial Impact Type

Angle	Approaching	Rear end	Sideswipe	SMV Other	Turning
59	16	451	86	61	334

Time of Collision

Exhibit 5 shows the collision distribution for the corridor based on time-of-day. The data indicates that the vast majority of the collisions (775 of 1007) occurred between the hours of 7:00 AM and 7:00 PM. This information reinforces the observation that many of the collisions are a product of heavy congestion, as observed by the collision spikes associated with the AM (7:00 AM-10:00 AM) and PM (3:00 PM-7:00 PM) peak periods. The results further reinforce the connection between congestion and rear-end and turning vehicle collisions. These observations are most pronounced during the PM peak period, as approximately one third of all collisions occur between 3:00 PM and 7:00 PM.

IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada

Exhibit 5: Hourly Collision Frequency by Type

Road and Weather Conditions

An analysis of road and weather conditions was conducted for all collisions, and the results suggest that weather, in addition to congestion, may be a contributing factor in the safety performance of the corridor. Exhibit 6 shows the collision distribution under various road surface conditions, while Exhibit 7 indicates the reported weather conditions at the time of collision.

It was found that approximately 30% of the reported collisions occurred under compromised (e.g., wet, icy, slushy, snow-covered, etc.) road surface conditions, and approximately 20% of collisions occurred during inclement weather. There was a higher representation of single vehicle collisions related to loss of control during periods of poor road and weather conditions. These trends were particularly pronounced at the North and South Service Roads of the QEW, where sharp curves and speeds on intersection approaches were found to be a factor in the collision history. Further analysis is provided for each of these intersections.

IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada

Exhibit 6: Collision Frequency by Road Surface Condition

Dry	Loose Snow	Ice	Other	Packed Snow	Slush
719	22	10	11	4	13

Exhibit 7: Collision Frequency by Weather Conditions

Clear	Drifting Snow	Fog, Mist, Smoke, Dust	Other	Rain	Snow
783	7	7	28	141	41

IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada
tel 4165961930
fax 4165960644

Traffic Volume and Operating Speed Analysis

Exhibit 8 provides a summary of the 24 -hour speed and traffic volume observations from September 10-12, 2012, averaged throughout the corridor for northbound and southbound directions.

Exhibit 8: Hourly Corridor Traffic Volume and Speed

It can be seen that speeds well above the $50 \mathrm{~km} / \mathrm{h}$ posted limit are maintained throughout the day, with the most excessive speeds in the overnight hours reaching well over $70 \mathrm{~km} / \mathrm{h}$.

Two clear bi-directional volume peaks in the AM and PM peak periods are observed between the hours of 7:00 AM and 9:00 AM, and between 3:00 PM and 7:00 PM. While a consistent decrease in AM peak period speed occurred around 8:00 AM, PM speeds generally remained consistent despite the peaking in traffic volumes. Complete speed and traffic volume data can be found in Appendix B.

Historical traffic volumes indicate a decline in demand on Cawthra Road over recent years, as shown in Exhibit 9. Specifically, annual average daily traffic (AADT) on the corridor has decreased from 2005 to 2012 by 24%. Traffic volume well below capacity is consistent with high speeds observed along the corridor, which may be a contributing factor in areas of safety underperformance.

IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada

Exhibit 9: Cawthra Road AADT, 1996-2012

Historical Safety Performance

The Region of Peel provided a history of safety performance along the Cawthra Road corridor since 2005, categorized into two study periods: 2005-2009 and 2008-2012. During the period from 2005 to 2009, an annual collision frequency of 133 collisions per year was reported. In the 2008-2012 study period, the collision frequency increased to 168 collisions per year (26% increase), potentially indicative of worsening safety performance along the corridor. However, it should be noted that the study periods overlapped by two years (2008 and 2009), resulting in the increase being largely attributed to two above-average years of collisions in 2010 and 2011 (shown earlier in Exhibit 1).
Exhibit 10 presents a comparison of historical safety performance from 2005 to 2012, indicating that six (6) of the 15 major intersections and midblock segments had an increase in collision frequency from the 2005-2009 to the 2008-2012 study period. While potential for safety improvement (PSI) values could not be generated for the latter study period due to data constraints, it can be seen that six (6) intersections underperformed during the 2005-2009 study period with PSI values ranging from 8 to 36 ; these values represent the excess number of collisions observed over the study period as compared to predicted 5 -year collision frequency for intersections of similar configuration.

Exhibit 10: Summary of Intersection Collision Data

Intersection	Observed Collisions, 2005-2009 Total (PDO, F+l)	Potential for Safety Improvement (PSI), 2005-2009	Observed Collisions, 2008-2012 Total (PDO, F+l)	Collision Rate, 2008- 2012^{1}	Percent Change in Collision Frequency (2005-2009 vs 2008-2012)
Eastgate Parkway / Highway 403	$110(100,10)$	0	128 (109, 19)	1.27	16\%
Meadows Boulevard	$14(9,5)$	7.71	$17(12,5)$	0.28	21\%
Rathburn Road East	$38(34,4)$	0	$37(32,5)$	0.42	-3\%
Burnhamthorpe Road East	147 (130, 17)	0	169 (149, 20)	1.43	15\%
3643 Cawthra Road	N/A	N/A	$16(13,3)$	N/A	N/A
Bloor Street	$63(52,11)$	0	$84(72,12)$	0.81	33\%
Silver Creek Boulevard	$37(27,10)$	35.59	$36(33,3)$	0.46	-3\%
Ramp to Dundas Street East	$64(62,2)$	35.16	$77(68,9)$	0.78	20\%
655 Queensway East	N/A	N/A	$35(29,6)$	N/A	N/A
Queensway East	$139(121,18)$	14	123 (106, 17)	1.02	-12\%
Tedwyn Drive	$26(21,5)$	11.87	23 (19, 4)	0.31	-12\%
North Service Road	53 (44, 9)	0	$61(57,4)$	0.66	15\%
QEW Westbound Ramp	$8(6,2)$	0	11 (8, 3)	0.16	38\%
QEW Eastbound Ramp	$35(31,4)$	10.59	$34(28,6)$	0.47	-3\%
South Service Road	$46(38,8)$	0	$76(64,12)$	0.77	65\%

${ }^{1}$ Collisions per million intersecting vehicles.

The collision rates calculated for the Eastgate Parkway, Burnhamthorpe Road East and Queensway East intersections with Cawthra Road were significantly higher than the other intersections; potential reasons for these high collision rates are examined later within the intersection analysis.
For each of the intersections and midblock segments listed above, a review of safety operations is presented below.

Intersection Collision Analysis.

The following sections describe the analysis and findings related to collisions at each of the study area intersections and midblock segments previously identified. For locations with significant traffic volume and/or collision trends, a collision diagram is provided in Appendix A. The diagrams illustrate collision trends and concentrations along the corridor, and depict the vehicle movements and initial directions of travel of the involved vehicles for each reported collision.

IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada
tel 4165961930
fax 4165960644

Eastgate Parkway / Highway 403

Cawthra Road reaches its northern terminus at the intersection of Eastgate Parkway and two ramps from Highway 403. As a major 4-way signalized intersection, heavy traffic volumes and potentially high speeds have contributed to the collision history as the road transitions between freeway and arterial character.

A total of 128 collisions were reported over the five-year period from 2008 to 2012, representing an increase of 16% from the previous study period of 2005 to 2009. Exhibit 11 indicates the annual distribution of collisions over the analysis period. The intersection had the second highest collision frequency of all intersections along the corridor. The collision rate, normalized against traffic volume, was also second highest among all intersections studied (1.27 collisions per million intersecting vehicles), indicative of the relatively poor traffic safety performance at this intersection.

Exhibit 11: Eastgate Parkway/Highway 403 Annual Collision Frequency

An analysis of collision impact types reveals a prevalence of rear-end collisions (55\%) followed by turning movement collisions (34\%), with low occurrence of other collision types as illustrated in Exhibit 12.

Exhibit 12: Eastgate Parkway/Highway 403 Collisions by Initial Impact Type

Angle	Approaching	Rear-end	Sideswipe	SMV other	Turning
4	0	71	8	2	N/A

The data show that 85% of the collisions resulted in property damage only, with the remaining 15% comprised of non-fatal injuries. The large number of rear-end collisions is consistent with the character of the intersection, with a 140 second traffic signal cycle length and long queues in all directions. Most of these rear-end collisions were relatively minor, resulting in property damage only. Of the 43 turning movement collisions reported, the clearest trends were observed in left-turn collisions, illustrated in the collision diagram in Appendix A. Left-turns from northbound Cawthra Road to westbound Highway 403 had the highest frequency of turning movement collisions, with the majority likely resulting from gap misjudgment by the left-turning vehicle. All four directions of left-turns are given protected and permitted signal phases.

It was found that five (5) left-turn collisions were the fault of the through traffic disobeying the traffic signal; all five of these were attributed to eastbound or southbound vehicles which originated from Highway 403. With no apparent sightline issues, it should be investigated whether the ramp traffic is given sufficient warning to slow from the highway speed limit of 100 km / h to the arterial speed limit of $50 \mathrm{~km} / \mathrm{h}$ (Cawthra Road) or $70 \mathrm{~km} / \mathrm{h}$ (Eastgate Parkway). Current signage advises a ramp speed of $90 \mathrm{~km} / \mathrm{h}$ on the southbound approach, with a " $50 \mathrm{~km} / \mathrm{h}$ ahead" sign placed immediately upstream of the intersection.

Meadows Boulevard

The intersection of Cawthra Road and Meadows Boulevard is a signalized three-leg intersection 400 m south of Eastgate Parkway, south of which Cawthra Road is abutted on both sides by residential land uses. From 2008 to 2012, there were 17 reported collisions, five (5) of which resulted in non-fatal injuries (29\%). The five-year distribution of collisions is illustrated in Exhibit 13, showing an absence of collisions in 2009.

Exhibit 13: Meadows Boulevard Annual Collision Frequency

The most frequent collision type was rear-ends (53\%), again followed by turning movement collisions (35\%) as shown in Exhibit 14.

Exhibit 14: Meadows Boulevard Collisions by Initial Impact Type

Angle	Approaching	Rear-end	Sideswipe	SMV other	Turning
1	0	9	1	0	6

The collision frequency (3.4 per year) and collision rate (0.28 collisions per million intersecting vehicles) are among the lowest of signalized intersections within the Cawthra Road corridor, with a typical pattern of collisions observed.

IBI Group

GROUP

Rathburn Road East

Cawthra Road and Rathburn Road East intersect at a 4-leg signalized intersection in a predominantly residential area. There were 37 collisions reported in the five-year period ending in 2012, with an annual frequency illustrated in Exhibit 15. Since 2005, there was a 2.6\% decrease in collision frequency. Five (5) out of the 37 collisions resulted in personal injury (14\%).

Exhibit 15: Rathburn Road East Annual Collision Frequency

While rear-end collisions were the most frequently reported type of initial impact (43\%), turning movement (22%), angle (16%), and sideswipe (14%) collisions also represented a relatively even proportion of collisions (Exhibit 16).

IBI Group

Exhibit 16: Rathburn Road East Collisions by Initial Impact Type

| Angle | Approaching | Rear-end | Sideswipe | SMV other | Turning |
| :---: | :---: | :---: | :---: | :---: | :---: | N/A

Rear-end collisions were most prevalent on the southbound approach, followed by the northbound approach. Angle collisions were most frequent among the southbound and eastbound approaches, with an even split of at-fault drivers between these two approaches. Overall, the intersection performed significantly better than predicted by safety performance models, and had a collision rate of only 0.4 collisions per million intersecting vehicles.

Burnhamthorpe Road East

Cawthra Road and Burnhamthorpe Road East intersect at a 4-leg signalized intersection in a predominantly residential area. There were 169 collisions reported in the five-year period ending in 2012, with an annual frequency illustrated in Exhibit 17. Since 2005, there was a 15% increase in collision frequency. The intersection had the highest collision frequency of any intersection along the corridor. The collision rate, normalized against traffic volume, was also highest among all intersections studied (1.43 collisions per million intersecting vehicles), indicative of the relatively poor traffic safety performance at this intersection. Twenty (20) out of the 169 collisions resulted in personal injury (12\%).

IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada
tel 4165961930
fax 4165960644
Exhibit 17: Burnhamthorpe Road East Annual Collision Frequency

While rear end collisions still comprised a significant proportion (30\%) of collisions at the Burnhamthorpe Road East intersection, they did not represent the dominant collision type; which is unlike all other intersections along Cawthra Road. Turning movement collisions were the dominant collision type (52%). Seventy (70) of the 87 turning movement collisions were between southbound left turning vehicle and a northbound through vehicle indicating a significant problem. Sight lines were not observed to be problematic and there is a dedicated southbound left-turn phase; albeit only a 12 second phase (including amber). The short duration of the dedicated left-turn phase suggests that a significant portion of left turning vehicles are completing the turns during the permitted phase, which is likely contributing to the high collision frequency. Additionally, the intersection geometry is skewed leading to a larger-than-90-degree southbound left-turn, which is uncommon.

The intersection of Burnhamthorpe Road East and Cawthra Road has recently undergone geometric improvements. The channelized right-turn lanes have been replaced with dedicated right-turn lanes. Additionally, the intersection skew has been slightly corrected using the extra space provided by the removed channelized right-turns. These intersection geometric improvements could have partially addressed the factors contributing to the large number of southbound left turning movement collisions. Therefore, it may be several years before it is know whether or not the new intersection geometry has improved safety performance.

IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada

Exhibit 18: Burnhamthorpe Road East Collisions by Initial Impact Type

Angle	Approaching	Rear-end	Sideswipe	SMV other	Turning
4	0	51	20	7	N/A
4				87	0

3643 Cawthra Road (Plaza Driveway 120 metres south of Burnhamthorpe Road East)
The commercial plaza located at 3643 Cawthra Road was identified as having a higher than predicted collision frequency. The plaza is located on the east side of Cawthra Road 120 m south of Burnhamthorpe Road East. Left-turns into the plaza parking lot are facilitated by a centre two-way left-turn lane. Left-turns in and out of the plaza must cross 3 northbound lanes, consisting of two through lanes and one right-turn storage lane for Burnhamthorpe Road East, as well as the taper of a downstream left-turn lane.
A total of 16 collisions were reported in the vicinity of this driveway, including three (3) injury collisions (19\%). The five-year history of collision frequency is shown in Exhibit 19.

IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada

Exhibit 19: 3643 Cawthra Road Annual Collision Frequency

Most of the reported collisions were related to turning movements (81\%), as shown in Exhibit 20.

Exhibit 20: 3643 Cawthra Road Collisions by Initial Impact Type

Angle	Approaching	Rear-end	Sideswipe	SMV other	Turning	N/A
0	0	3	0	0	13	0

With northbound queues for Burnhamthorpe Road East potentially stretching back to this midblock driveway, the rear-end collisions can likely be attributed to these queues.

Signage indicating "Left Turns: Centre Lane Only" is placed immediately upstream of the plaza in both directions, alluding to a possible history of safety concerns identified at this location. The collision diagram in Appendix A illustrates how the majority of turning movement collisions (7 out of 12) were caused by left-turns from southbound Cawthra Road into the plaza, while four (4)

IBI Group

GROUP
others were caused by left-turns exiting the plaza. The centre left-turn lane transitions to a raised concrete median approximately 30 m north of the driveway entrance, causing the centre left-turn lane to narrow and limit the left-turn storage length available. Potential treatments (e.g., banning certain left-turn movements) should be considered to mitigate the risk of collision at this location.

Bloor Street

The intersection of Cawthra Road at Bloor Street is a 4-leg signalized intersection located in a largely residential area. There were 84 collisions reported in the five-year period ending in 2012, with a gradually increasing yearly collision frequency as indicated in Exhibit 21.

Exhibit 21: Bloor Street Annual Collision Frequency

The distribution of collisions by initial impact type shows that the majority of collisions were rearends, as illustrated in Exhibit 22. This is followed by turning movement collisions, the majority of which were related to left-turning movements.

Exhibit 22: Bloor Street Collisions by Initial Impact Type

| Angle | Approaching | Rear-end | Sideswipe | SMV other | Turning |
| :---: | :---: | :---: | :---: | :---: | :---: | N/A

The traffic operations analysis indicates the presence of long queues, most notably in the northbound direction. As indicated in the collision diagram in Appendix A, this is consistent with a pattern of northbound rear-end collisions (21 over five years). A distribution of traffic speeds indicates widespread non-compliance with the $50 \mathrm{~km} / \mathrm{h}$ speed limit, with an $85^{\text {th }}$ percentile speed varying throughout the day from $64 \mathrm{~km} / \mathrm{h}$ to $72 \mathrm{~km} / \mathrm{h}$ northbound, and from $66 \mathrm{~km} / \mathrm{h}$ to $79 \mathrm{~km} / \mathrm{h}$ southbound. Excessive speeding was generally found to occur between the hours of 8:00 pm and 6:00 am.

The distribution of collisions by severity indicates that 85% of collisions resulted in property damage only (70 collisions), and 13\% resulted in personal injury (11 collisions). A fatal collision occurred in 2009 when a northbound driver disobeyed the traffic signal, colliding with a westbound driver in an angle collision.

With a collision rate of 0.81 per million intersecting vehicles, the intersection was found to perform better than predicted by the safety performance model. Nevertheless, factors such as excessive speed and heavy turning volumes may have contributed to the high number of collisions at this intersection.

Silver Creek Boulevard

Cawthra Road at Silver Creek Boulevard is a signalized three-leg intersection where Cawthra Road begins to transition from residential towards commercial and industrial land uses. There were 36 collisions reported at this intersection between 2008 and 2012, with no clear increasing or decreasing trend, as shown in Exhibit 23. IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada

Exhibit 23: Silver Creek Boulevard Annual Collision Frequency

The intersection was found to have almost three times as many PDO (property damage only) collisions as was predicted over this five-year time span, with a particularly large incidence of southbound rear-end collisions. The complete distribution by initial impact type is shown in Exhibit 24.

Exhibit 24: Silver Creek Boulevard Collisions by Initial Impact Type

Angle	Approaching	Rear-end	Sideswipe	SMV other	Turning
3	0	23	2	0	N/A

The predominance of southbound rear-end collisions is consistent with the larger southbound volumes throughout the day, with AM and PM peak period volume of 1400 vehicles per hour, compared to the northbound AM and PM peak period volumes of 1100 vehicles per hour.

IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada
tel 4165961930
fax 4165960644
Furthermore, the intersection is closely spaced to the Dundas Street ramp intersection, located 170 m south of Silver Creek Boulevard. This short spacing may encourage drivers to accelerate through Silver Creek Boulevard to reach Dundas Street, and may be a factor in explaining the history of collisions at this intersection.

Ramp to Dundas Street East

Dundas Street East and Cawthra Road are grade separated, and are connected via a signalized ramp. The intersection of Cawthra Road and the ramp to Dundas Street is 4 -way with a church driveway comprising the westbound approach. Right-turns to and from the ramp are channelized, and the character of the road is conducive to high speeds as similarly observed at Silver Creek Boulevard.

Through the assessment of the 87 collisions occurring at the Dundas Street and Cawthra Road ramp, 40 collisions were observed to occur at the Dundas Street ramp terminal intersection rather than the Cawthra Road ramp terminal intersection. As such, these collisions are outside the scope of this study and were not included within this assessment. There were 37 collisions reported between 2008 and 2012, and a year-to-year comparison indicates a drop in collision frequency over this period as shown in Exhibit 25, as well as a drop since the previous five-year study period.

Exhibit 25: Dundas Street Ramp Annual Collision Frequency

Of these 37 collisions, 33 resulted in property damage only (89%), while the remainder involved non-fatal injuries. As illustrated in Exhibit 26, the majority of collisions (57\%) were rear-end, while turning movement (24%) and sideswipe (16%) collisions made up the bulk of the other collision types.

Exhibit 26: Dundas Street Ramp Collisions by Initial Impact Type

| Angle | Approaching | Rear-end | Sideswipe | SMV other | Turning |
| :---: | :---: | :---: | :---: | :---: | :---: | N/A | N |
| :---: |
| 0 |

The collision diagram in Appendix A shows a clear trend of rear-end collisions immediately south of the intersection, where vehicles turning right from the Dundas Street ramp to southbound Cawthra Road must merge out of the channelized right-turn. Despite a yield sign warning drivers to wait for a gap, it is ambiguous to drivers whether a complete merge lane exists following the channel, or whether drivers must immediately enter the right lane of through traffic. No pavement markings exist to indicate the end of the right-turn channel, which is inconsistent with other nearby intersections that clearly indicate the presence of a right-turn merge lane.
The other clear pattern of collisions is northbound left-turns colliding with southbound through traffic. Analysis of collision reports indicates that all seven (7) of these collisions were the fault of improper turns by northbound traffic destined for Dundas Street. It should be noted that the character of southbound Cawthra Road is highly conducive to speeding, with a downhill section immediately downstream of the intersection towards the Dundas Street underpass, and an extended stretch of road with no accesses or signals. Therefore, while northbound left-turns may be at fault for these collisions, the issue of gap identification may be a contributing factor.

655 Queensway East (Gas Station Driveway on Cawthra Road 90 m north of Queensway East)

With the highest frequency of midblock collisions along the entire corridor, the driveway to 655 Queensway East was found to be significantly underperforming from a safety perspective. The driveway provides access to a gas station and plaza on the north-west corner of the intersection of Cawthra Road and Queensway East and, similar to the midblock access at 3643 Cawthra Road, left-turns from Cawthra Road are facilitated by a centre two-way left-turn lane.

There were 35 collisions reported in the vicinity of this driveway between 2008 and 2012. Annual collision frequency is illustrated in Exhibit 27, and it indicates high variability in collision frequency from year to year. Compared to the predicted collision frequency for this midblock segment, there were five times as many collisions observed as were predicted.

IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada

Exhibit 27: 655 Queensway East Annual Collision Frequency

The distribution of collisions by initial impact type, shown in Exhibit 28, clearly indicates that turning movements at this driveway are the predominant concern. The collision diagram in Appendix A shows that 18 of the 31 turning movement collisions were between northbound leftturns and southbound through traffic, and that improper turns and failure to yield right-of-way were the contributing driver actions in most of these collisions. The other significant trend was 12 other turning movement collisions, between eastbound left-turns exiting the driveway and southbound through traffic. Both turning movements must cross three southbound lanes, plus the taper of the dual left-turn lane for Queensway East.

Exhibit 28: 655 Queensway East Collisions by Initial Impact Type

Angle	Approaching	Rear-end	Sideswipe	SMV other	Turning	N/A
0	0	2	2	0	31	0

IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada
tel 4165961930
fax 4165960644
Considering the existing dual access to this plaza (from Cawthra Road and from Queensway East), it should be investigated whether certain left-turn restrictions can be applied to improve the safety performance of this currently underperforming segment.

Queensway East

The intersection of Cawthra Road and Queensway East was found to have among the highest five-year collision frequencies of any intersection along the corridor with 123 collisions reported between 2008 and 2012. As a major 4 -way signalized intersection, it had the highest average daily traffic volume along the corridor. Despite the high volumes, the normalized collision rate was still among the highest within the corridor, with a rate of 1.02 collisions per million intersecting vehicles. The annual collision frequency from 2008 to 2012 is shown in Exhibit 29.

Exhibit 29: Queensway East Annual Collision Frequency

Of the 123 collisions, 106 resulted in property damage only (86%), while the remaining 17 involved personal injury. There were two clear trends in collision type, as illustrated in Exhibit 30, with rear-end and turning movement collisions comprising 86% of the collisions.

Exhibit 30: Queensway East Collisions by Initial Impact Type

Angle	Approaching	Rear-end	Sideswipe	SMV other	Turning	N/A
4	2	55	7	4	51	0

As shown in the collision diagram in Appendix A, rear-end collisions were most prevalent on the southbound approach (19), followed by the northbound approach (17). Despite the large number of rear-end collisions, only four (4) resulted in injury.

The other stark trend evident in the collision diagram is the turning movement collisions between eastbound left-turn and westbound through vehicles, and between northbound left-turn and southbound through vehicles. The northbound and eastbound left-turn movements are given protected and permissive phasings, with single left-turn lanes. This is in contrast to the westbound and southbound left-turn movements, which are given dual turn lanes and protectedonly phasing.

Because of this asymmetry, there exists the potential for sightline issues during the permitted phase of the northbound and eastbound left-turns, which may have an obstructed view of the oncoming traffic adjacent to two left-turn lanes. Shadow lanes are used to mitigate the effects of this asymmetry, but the history of collisions indicates that this is not necessarily sufficient to ensure the safety of these turning movements. Of the 41 turning movement collisions related to these movements, almost all were determined to be the fault of the left-turning vehicle, indicating a systematic issue with the ability for drivers to judge gaps in oncoming traffic. Reconfiguration of the northbound and eastbound approaches to include dual left-turn lanes should be investigated as a potential treatment at this intersection.

Tedwyn Drive

South of Queensway East, Cawthra Road adjacent land uses are again predominantly residential. The intersection of Cawthra Road and Tedwyn Drive is located 350 m south of Queensway East, and is a three-way signalized intersection.

There were 23 collisions reported between 2008 and 2012, with decreasing frequency since 2005. Yearly collision frequency from 2008 to 2012 is shown in Exhibit 31.

IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada

Exhibit 31: Tedwyn Drive Annual Collision Frequency

The majority of collisions were rear-ends, predominantly in the northbound direction. A complete distribution of collisions by initial impact type is shown in Exhibit 32.

Exhibit 32: Tedwyn Drive Collisions by Initial Impact Type

Angle	Approaching	Rear-end	Sideswipe	SMV other	Turning	N/A
3	2	13	1	0	4	0

It was found that four (4) collisions were the result of a driver disobeying the traffic signal; all four of these were southbound drivers at fault. Further review of right angle collisions and screening for the use of red-light cameras (based on current Region guidelines) as a means to reduce the frequency of such infractions should be considered. It should be noted that the cross-section of Cawthra Road is asymmetric between Queensway East and the QEW, with three southbound and two northbound lanes. The wide southbound cross-section on this stretch of flat, straight

IBI Group

GROUP
roadway is conducive to high speeds, as evidenced by $85^{\text {th }}$ percentile speeds at or above 70 km / h for most of the day. Complete 24 -hour speed data is shown in Appendix B.

North Service Road

North Service Road is a two-lane road that parallels the QEW and provides access to properties adjacent to the highway. It intersects Cawthra Road 150 m north of the westbound QEW offramp signalized intersection. A total of 61 collisions were reported at this intersection between 2008 and 2012. Yearly collision frequency from 2008 to 2012 is shown in Exhibit 33.

Exhibit 33: Tedwyn Drive Annual Collision Frequency

Analysis of collisions by initial impact type reveals a varied distribution in collision types, as shown in Exhibit 34. Rear-end collisions were the most common (33\%), followed by turning movements (21\%).

Exhibit 34: North Service Road Collisions by Initial Impact Type

| Angle | Approaching | Rear-end | Sideswipe | SMV other | Turning |
| :---: | :---: | :---: | :---: | :---: | :---: | N/A

This intersection had the largest number of approaching (head-on) collisions along the corridor, all four (4) of which occurred in wet or snowy conditions and were due to speeding or loss of control by a vehicle on North Service Road at Cawthra Road. There was a similarly high incidence of single motor vehicle (SMV) collisions. The roadway alignment is such that both eastbound and westbound drivers must negotiate a sharp bend on the approach to the intersection. With a posted speed limit of $60 \mathrm{~km} / \mathrm{h}$ on North Service Road, it is possible that speeding drivers may misjudge the tightness of the curve or have difficulty seeing the traffic signal heads. It is recommended that further investigation be done to explore the benefits of treatments such as improved signage or auxiliary signal heads for the eastbound and westbound approaches.

It was found that seven (7) collisions were the fault of a driver disobeying the traffic signal, most of which were northbound or southbound drivers (6 out of 7). As the intersection is immediately north of the QEW interchange, southbound drivers may be prone to disobeying the signal as it is the last signal before the westbound QEW on-ramp; similarly, northbound drivers originating from the QEW may be accustomed to high speed and more likely to disobey or misjudge the signal. Further review of right angle collisions and screening for the use of red-light cameras (based on current Region guidelines) as a means to reduce the frequency of such infractions should be considered.

QEW West Ramp

The westbound QEW exit ramp terminates at a signalized 3-leg intersection with Cawthra Road. Over the five-year period from 2008 to 2012, only 11 collisions were observed, representing fewer than half as many collisions as was predicted over this period. The annual breakdown of collision frequency is shown in Exhibit 35. IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada

Exhibit 35: QEW West Ramp Annual Collision Frequency

A fatality occurred in 2011 as the result of an angle collision. A northbound drunk driver disobeyed the traffic signal and struck a westbound vehicle turning left from the QEW ramp.
The types of collisions reported at this intersection were predominantly rear-end and turning movement collisions, as shown in Exhibit 36. All four (4) rear-end collisions involved northbound vehicles, and two of these resulted in personal injury. There is a gentle left-hand bend in the northbound approach as Cawthra Road passes over the QEW, and this stretch of road is wide open and conducive to high speeds. Close spacing of the four intersections in this stretch of Cawthra Road (two ramp intersections and two service roads) may be contributing factors to the collision history in this area.

IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada

Exhibit 36: QEW West Ramp Collisions by Initial Impact Type

| Angle | Approaching | Rear-end | Sideswipe | SMV other | Turning |
| :---: | :---: | :---: | :---: | :---: | :---: | N/A

QEW East Ramp

Similar to the geometry of the westbound QEW exit ramp, the eastbound QEW exit ramp terminates at a 3-leg intersection. Over the five-year period from 2008 to 2012, a total of 34 collisions were reported. The annual breakdown of collision frequency is shown in Exhibit 37. On average, the frequency has been mostly decreasing, with a slight decrease since the previous study period from 2005 to 2009.

Exhibit 37: QEW East Ramp Annual Collision Frequency

As illustrated in the collision diagram in Appendix A, the overwhelming majority of collisions at this intersection were rear-ends on the southbound approach. The complete distribution of

IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada
tel 4165961930
fax 4165960644
collisions by initial impact type is shown in Exhibit 38. The two-lane southbound approach is characterized by a slight downhill and gentle right-hand bend downstream of the QEW overpass. There is little signage to indicate a speed limit of $50 \mathrm{~km} / \mathrm{h}$ in this area, especially considering drivers originating from the westbound QEW may not be accustomed to, or aware of, the slower speed limit. Similar to the westbound QEW exit ramp and North Service Road, the eastbound ramp intersection is closely adjacent to the South Service Road, with an intersection spacing of 160 metres.

Exhibit 38: QEW East Ramp Collisions by Initial Impact Type

Angle	Approaching	Rear-end	Sideswipe	SMV other	Turning	N/A
2	0	25	1	2	4	0

Furthermore, the right-most (third) southbound lane on Cawthra Road exits to the eastbound QEW immediately upstream of the traffic signal, resulting in this lane maintaining high speeds while the left two lanes serve as queue storage. The differential in speed across the three southbound lanes may be a contributing factor to the prevalence of rear-end collisions on the approach to this intersection.

It is recommended to consider the implementation of an auxiliary signal head for the southbound approach on the north side (near-side) of the intersection in order to address possible sightline issues given the downhill right-hand bend along the southbound approach.

South Service Road

The South Service Road parallels the QEW and provides access to properties adjacent to the highway. It intersects Cawthra Road 160 metres south of the eastbound QEW exit ramp at a 4leg signalized intersection. This intersection marks the southern end of the study area.

Between 2008 and 2012, a total of 76 collisions were reported. This marks a significant increase (65%) since the 2005 to 2009 study period, and is worse than predicted by models. The yearly breakdown of collision frequency is shown in Exhibit 39.

IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada

Exhibit 39: South Service Road Annual Collision Frequency

As illustrated in Exhibit 40, approximately half of the 76 collisions were rear-ends. Most of these occurred on the southbound approach, with similar character to the southbound approach at the westbound QEW exit ramp which also had a high incidence of southbound rear-end collisions.

Exhibit 40: South Service Road Collisions by Initial Impact Type

Angle	Approaching	Rear-end	Sideswipe	SMV other	Turning	N/A
5	3	37	8	11	11	1

There was also a relatively high prevalence of single motor vehicle (SMV) collisions caused by loss of control on the eastbound and westbound approaches to this intersection. Much like the North Service Road, these approaches have sharp bends as illustrated in the collision diagram in Appendix A. Given that almost all of the loss-of-control collisions at this intersection occurred in wet, snowy or otherwise inclement weather conditions, it should be investigated how the

IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada
tel 4165961930
fax 4165960644
safety performance of these approaches can be improved (e.g., geometric improvements, warning signs and/or speed management). Improved signage and auxiliary (near-side) signal heads may offer safety benefits to drivers on South Service Road.

Of the 76 collisions, nine (9) were the fault of drivers disobeying the traffic signal. Most of these nine collisions were caused by southbound drivers failing to stop at the red light, and resulted in turning movement, angle, and sideswipe collisions. Further review of right angle collisions and screening for the use of red-light cameras (based on current Region guidelines) as a means to reduce the frequency of such infractions should be considered.

Conclusions and Recommendations

Based on the analysis presented above, the following conclusions were reached:

- There were a total of 1007 collisions reported for the corridor over the 5-year analysis period, and the majority (890) occurred at intersections;
- There were 143 non-fatal injury collisions, most of which were rear end (53) or turning movement (53), and 2 fatal collisions, both of which were angle collisions;
- The dominant collision impact type throughout the corridor was rear-end collisions (45\%), followed by turning movement collisions (33\%);
- Weather and compromised road surface conditions were also a factor in a significant number of collisions, at 20% and 30%, respectively; however, these distributions may not constitute statistical over-representations.
- In addition to the above, the following conclusions apply to individual intersections along the corridor:
- The intersection of Cawthra Road at Eastgate Parkway/Highway 403 exhibited the second highest frequency and rate of collisions over the fiveyear study period, contributed by a transition from highway to arterial speeds in both the north-south and east-west directions;
- Turning movement collisions was the dominant collision type at the intersection of Cawthra Road at Burnhamthorpe Road East, which differed from all other intersections. The southbound left turning vehicles colliding with northbound through vehicles comprised 70 and the 87 turning movement collisions at the intersection indicating a significant problem. Recent intersection geometry improvements could have partially addressed the southbound left problem; further study once several years of collision data are available is recommended to assess the new intersection geometry performance.
- The midblock segment at 3643 Cawthra Road, 120 metres south of Burnhamthorpe Road East, was found to have a high frequency of collisions at a plaza entrance, with left-turns into the plaza using a centre left-turn lane. Further analysis of midblock operations may determine if changes are warranted at this location;
- Excessive speeding, as observed along the entire corridor, was likely a factor contributing to the history of collisions at the intersection of Cawthra Road and Bloor Street, with $85^{\text {th }}$ percentile speeds often reaching above $70 \mathrm{~km} / \mathrm{h}$;
- Inconsistent lane markings at the intersection of Cawthra Road and the Dundas Street ramp have may be contributing to rear-end collisions caused by drivers misjudging the southbound merge from the right-turn channel.

IBI Group
5th Floor-230 Richmond Street West
Toronto ON M5V 1V6 Canada

Clear merge lane markings would help alleviate the ambiguity of lane configuration and right-of-way;

- The midblock segment immediately north of Queensway East was found to have an exceptionally large number of left-turn collisions into the commercial driveway at 655 Queensway East. Similar to the other midblock segment noted above, there is a centre left-turn lane and an opposing lane configuration over 3 lanes wide;
- The intersection of Cawthra Road and Queensway East was found to have a large frequency and rate of collisions, with potential sightline issues related to the asymmetry of the left-turn lanes. Traffic operations should be further analyzed to determine if turning volumes may warrant a reconfiguration of the left-turn lanes to fully protected, dual left-turns;
- Both the North and South Service Roads were identified to have a high incidence of collisions related to drivers misjudging the sharpness of the eastbound and westbound approach curves. Improved signage and the use of auxiliary signal heads may help to better warn drivers of the signalized intersection ahead; and
- The downhill grade and right-hand bend on the southbound approach to the intersection of Cawthra Road and the eastbound QEW off-ramp may have contributed to the prevalence of southbound rear-end collisions at this location. Similar treatments as described for the Service Roads could be applied to mitigate the safety concerns at this intersection.
- Corridor speed and volume data suggest that overall, excessive speeding is a concern along Cawthra Road, with $85^{\text {th }}$ percentile speeds frequently reaching over $20 \mathrm{~km} / \mathrm{h}$ above the posted speed limit. Recurring congestion was not found to be a crucial issue throughout the corridor. Therefore, caution should be exercised as to not create conditions that further encourage higher speeds in an effort to alleviate peak period congestion.

IBI Group
5th Floor-230 Richmond Street West Toronto ON M5V 1V6 Canada
tel 4165961930
fax 4165960644

APPENDIX A

COLLISION DIAGRAMS

COLLISION DIAGRAM

Location: Cawthra Road and Eastgate Parkway
Period: January 1, 2008 to December 31, 2012
SYMBOLS: \quad ACCIDENT TYPES:
\longrightarrow Moving Vehicle
\bigcirc Cyclist
\rightarrow Pedestrian
 Fixed Object Collision Animal Collision

Injury Collision
Fatal Collision
 Turning Movement
\rightarrow Rear-End
\downarrow Approaching

COLLISION DIAGRAM

Location: Cawthra Road and Burnhamthorpe Road East
Period: January 1, 2008 to December 31, 2012
SYMBOLS:
ACCIDENT TYPES:
\longrightarrow Moving Vehicle

Fixed Object Collision
\# Animal Collision
Injury Collision
\rightarrow Pedestrian
ACCIDENT TYPES:

\rightarrow| Lost |
| :--- |
| Control |\rightarrow Sideswipe \rightarrow Turnin

Rear-End \downarrow Approaching $\rightarrow \downarrow$ Angle

COLLISION DIAGRAM
Location: Cawthra Road and North Service Road
Period: January 1, 2008 to December 31, 2012
SYMBOLS:

\longrightarrow Moving Vehicle \quad| \longrightarrow |
| :--- |
| \longrightarrow Cyclist |
| \longrightarrow Pedestrian |

Fixed Object Collision
Animal Collision
Injury Collision
Fatal Collision
ACCIDENT TYPES:

Moving Vehicle
Cyclist
Pedestrian

Turning Movement

Angle

IBI Group
5th Floor-230 Richmond Street West Toronto ON M5V 1V6 Canada
tel 4165961930
fax 4165960644

APPENDIX B

CORRIDOR SPEED AND TRAFFIC DATA

85th Percentile Speed		Cawthra Road at Arbor Road		Cawthra Road at Tedwyn Drive		Cawthra Road at Queensway East		Cawthra Road at Silver Creek Boulevard		Cawthra Road at Bloor Street		Cawthra Road at Burnhamthorpe Road East	
Start	End	NB	SB										
0:00	1:00	68.9	72.7	70.0	75.5	70.5	69.9	70.2	69.7	70.0	72.5	77.2	72.6
1:00	2:00	69.7	73.1	70.9	76.0	72.6	68.9	74.3	69.9	71.9	73.2	80.1	73.7
2:00	3:00	71.3	72.6	71.1	77.0	74.8	70.4	70.1	72.7	69.7	78.6	80.0	74.9
3:00	4:00	68.9	75.4	73.6	76.1	74.1	70.9	70.4	72.8	69.7	75.9	75.5	75.3
4:00	5:00	69.9	75.2	70.6	77.0	71.7	69.3	72.0	69.0	69.6	75.7	75.5	75.0
5:00	6:00	69.2	73.5	70.2	74.6	70.7	68.6	70.3	68.0	69.6	71.2	71.8	70.7
6:00	7:00	67.7	69.5	63.7	72.1	68.1	66.8	68.8	66.9	68.3	70.3	59.3	72.0
7:00	8:00	65.8	65.0	58.7	69.5	66.1	61.4	59.8	64.1	66.0	67.7	47.0	69.8
8:00	9:00	60.1	56.8	48.2	69.3	64.1	60.3	56.8	62.9	63.9	67.8	42.9	71.1
9:00	10:00	65.8	63.2	60.1	69.4	65.5	61.0	62.2	63.9	65.1	68.5	64.5	72.4
10:00	11:00	66.5	66.8	62.7	70.1	65.9	61.1	64.0	64.1	66.5	68.8	68.2	73.1
11:00	12:00	65.6	66.6	62.7	69.9	65.6	59.9	62.7	64.0	65.4	68.9	65.2	72.9
12:00	13:00	66.7	65.1	60.1	69.8	64.3	60.4	61.2	65.0	66.2	69.1	60.8	72.6
13:00	14:00	66.3	67.2	61.4	69.1	65.8	61.0	61.7	65.4	66.6	69.4	58.7	72.0
14:00	15:00	67.3	66.3	60.4	68.9	64.5	60.1	59.6	64.5	66.0	68.8	60.1	70.7
15:00	16:00	64.7	62.4	55.6	68.4	64.7	60.4	57.1	63.8	65.8	67.8	56.1	74.2
16:00	17:00	68.4	65.6	55.0	66.4	65.6	59.9	57.9	62.9	65.3	66.7	57.4	71.2
17:00	18:00	68.7	66.1	57.4	62.7	65.6	58.8	58.0	64.0	65.4	65.9	58.0	71.0
18:00	19:00	67.7	65.6	60.0	66.8	64.8	59.9	59.5	63.1	64.5	67.1	57.7	72.0
19:00	20:00	67.7	66.6	61.7	69.0	66.2	61.1	61.1	65.0	65.3	68.6	56.5	70.8
20:00	21:00	67.2	68.6	63.9	70.5	67.6	64.1	64.6	66.8	66.9	69.3	59.0	69.6
21:00	22:00	67.3	68.5	66.4	70.7	68.0	65.3	67.6	67.2	68.3	70.1	60.2	70.1
22:00	23:00	68.3	69.7	68.3	72.6	69.7	68.0	69.2	67.8	69.4	71.0	62.3	71.2
23:00	0:00	67.6	70.0	68.8	74.2	70.0	69.0	70.2	68.8	69.3	70.9	63.1	71.5

Hourly Traffic Volume		Cawthra Road at Arbor Road		Cawthra Road at Tedwyn Drive		Cawthra Road at Queensway East		Cawthra Road at Silver Creek Boulevard		Cawthra Road at Bloor Street		Cawthra Road at Burnhamthorpe Road East	
Start	End	NB	SB										
0:00	1:00	91.0	74.3	172.3	142.7	138.7	120.3	152.7	122.7	152.0	130.3	130.7	170.7
1:00	2:00	44.7	42.3	94.0	80.0	75.0	54.0	84.7	57.7	79.0	65.7	67.0	91.7
2:00	3:00	34.0	26.0	74.3	84.3	67.7	63.3	64.0	46.0	61.7	53.3	58.7	62.0
3:00	4:00	25.3	24.0	63.3	72.7	49.7	49.3	55.7	43.7	54.7	46.3	67.3	49.3
4:00	5:00	60.3	27.3	87.3	88.0	66.3	70.3	74.3	63.7	85.3	65.7	112.7	66.3
5:00	6:00	220.7	79.3	279.3	326.7	229.0	318.0	246.0	312.7	312.7	293.3	428.3	236.0
6:00	7:00	563.3	311.3	694.7	740.7	542.7	828.7	589.3	836.0	720.3	712.7	879.7	643.0
7:00	8:00	1073.3	561.0	1060.7	1104.0	883.3	1190.7	918.0	1302.7	1071.0	1081.7	887.3	1025.7
8:00	9:00	1259.7	939.7	991.0	1183.3	1093.3	1280.0	1124.7	1371.0	1150.7	1115.0	839.3	1009.7
9:00	10:00	737.3	500.3	954.7	895.3	774.3	977.7	794.7	1098.7	797.3	929.3	804.3	886.7
10:00	11:00	589.7	455.0	853.7	816.7	687.7	812.7	706.7	910.0	694.3	791.0	677.0	723.3
11:00	12:00	635.0	487.0	853.3	840.7	726.3	815.0	768.7	916.7	751.7	778.0	640.0	727.0
12:00	13:00	668.0	530.7	969.0	866.0	788.3	863.7	848.0	935.0	788.0	789.3	687.7	774.7
13:00	14:00	654.0	478.7	932.7	885.7	783.3	851.3	843.0	922.7	796.7	783.7	679.3	765.7
14:00	15:00	761.0	631.0	1051.0	1026.0	900.7	984.7	950.7	1058.3	921.3	904.3	763.0	905.7
15:00	16:00	1184.0	832.0	1201.0	1174.3	1154.0	1121.3	1135.3	1321.7	1044.7	1055.7	782.0	1162.7
16:00	17:00	1001.3	772.0	1126.3	1316.7	1124.3	1323.7	1132.0	1357.7	1062.3	1145.7	686.0	1317.7
17:00	18:00	917.0	811.7	1243.0	1365.3	1061.0	1413.7	1115.7	1372.7	1051.7	1255.3	652.3	1419.7
18:00	19:00	828.3	747.0	1117.0	1270.3	935.0	1194.7	990.7	1307.7	946.3	1124.7	643.3	1301.0
19:00	20:00	700.0	588.0	967.0	919.7	822.7	872.0	900.7	988.3	866.3	836.3	657.0	910.7
20:00	21:00	590.3	457.7	806.0	752.7	725.7	677.0	776.0	716.7	733.7	633.7	581.7	704.7
21:00	22:00	470.3	373.0	658.7	579.0	581.7	532.7	586.3	553.0	569.3	529.0	446.3	588.0
22:00	23:00	335.3	237.0	459.7	446.0	415.0	381.7	444.0	400.3	427.7	383.7	357.7	435.3
23:00	0:00	197.3	173.0	319.3	299.7	313.3	251.0	296.0	266.7	290.7	272.3	220.0	370.0

APPENDIX B

EXISTING (2016) AM \& PM PEAK HOUR LEVEL OF SERVICE ANALYSIS (SYNCHRO 9 OUTPUT)

APPENDIX B1

SIGNALIZED INTERSECTIONS

2016 AM PEAK HOUR

C Critical Lane Group

1: Cawthra Rd \& QEW EB Off-ramp

C Critical Lane Group

[^3]

C Critical Lane Group

| | | | | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

c Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	＊	44	「	${ }^{*}$	中4	「＇	${ }^{*}$	中4	「＇	${ }^{*}$	中4	「
Traffic Volume（vph）	131	1152	202	163	576	54	185	1159	200	102	1022	56
Future Volume（vph）	131	1152	202	163	576	54	185	1159	200	102	1022	56
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time（s）	3.0	7.5	7.5	3.0	7.5	7.5	3.0	8.0	8.0	4.0	8.0	8.0
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb，ped／bikes	1.00	1.00	0.99	1.00	1.00	0.97	1.00	1.00	0.99	1.00	1.00	0.98
Flpb，ped／bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）	1697	3476	1501	1700	3476	1483	1700	3476	1501	1700	3476	1495
Flt Permitted	0.34	1.00	1.00	0.08	1.00	1.00	0.10	1.00	1.00	0.09	1.00	1.00
Satd．Flow（perm）	607	3476	1501	145	3476	1483	176	3476	1501	160	3476	1495
Peak－hour factor，PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj．Flow（vph）	131	1152	202	163	576	54	185	1159	200	102	1022	56
RTOR Reduction（vph）	0	0	94	0	0	35	0	0	93	0	0	36
Lane Group Flow（vph）	131	1152	108	163	576	19	185	1159	107	102	1022	20
Confl．Peds．（\＃／hr）	14		1	1		14	11		1	1		5
Turn Type	pm＋pt	NA	Perm									
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8		8	4		4	6		6	2		2
Actuated Green，G（s）	58.5	49.5	49.5	58.5	49.5	49.5	63.0	54.0	54.0	54.0	49.0	49.0
Effective Green， g （s）	58.5	49.5	49.5	58.5	49.5	49.5	63.0	54.0	54.0	54.0	49.0	49.0
Actuated g／C Ratio	0.42	0.35	0.35	0.42	0.35	0.35	0.45	0.39	0.39	0.39	0.35	0.35
Clearance Time（s）	3.0	7.5	7.5	3.0	7.5	7.5	3.0	8.0	8.0	4.0	8.0	8.0
Vehicle Extension（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap（vph）	323	1229	530	160	1229	524	198	1340	578	116	1216	523
v／s Ratio Prot	0.03	0.33		c0．07	0.17		c0．07	0.33		0.03	0.29	
v／s Ratio Perm	0.14		0.07	c0．36		0.01	c0．35		0.07	0.31		0.01
v／c Ratio	0.41	0.94	0.20	1.02	0.47	0.04	0.93	0.86	0.19	0.88	0.84	0.04
Uniform Delay，d1	26.2	43.8	31.5	36.2	35.1	29.6	31.8	39.6	28.5	34.9	41.9	30.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1.17	1.97	1.90	0.93	1.00
Incremental Delay，d2	1.7	13.7	0.4	76.2	0.6	0.1	40.3	6.2	0.6	42.3	5.6	0.1
Delay（s）	27.9	57.5	31.9	112.4	35.7	29.7	75.2	52.5	56.5	108.7	44.6	30.1
Level of Service	C	E	C	F	D	C	E	D	E	F	D	C

Approach Delay（s）	51.4	51.0	55.8	49.4	
Approach LOS	D	D	E	C	D

Intersection Summary			
HCM 2000 Control Delay	52.2	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	1.00		22.5
Actuated Cycle Length（s）	140.0	Sum of lost time（s）	G
Intersection Capacity Utilization	103.4%	ICU Level of Service	
Analysis Period（min）	15		

c Critical Lane Group

c Critical Lane Group

2016 PM PEAK HOUR

C Critical Lane Group

C Critical Lane Group

C Critical Lane Group

C Critical Lane Group

C Critical Lane Group

c Critical Lane Group

	\rangle						4	4	p	4	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个4	F	\％	¢ 4	「	\％	个4	F	\％	个 4	F
Traffic Volume（vph）	62	698	116	215	1251	72	281	893	88	99	1270	56
Future Volume（vph）	62	698	116	215	1251	72	281	893	88	99	1270	56
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time（s）	3.0	7.5	7.5	3.0	7.5	7.5	3.0	7.5	7.5	3.0	7.5	7.5
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb，ped／bikes	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	0.98	1.00	1.00	0.98
Flpb，ped／bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）	1700	3476	1521	1700	3476	1471	1700	3476	1485	1699	3476	1485
Flt Permitted	0.08	1.00	1.00	0.25	1.00	1.00	0.08	1.00	1.00	0.22	1.00	1.00
Satd．Flow（perm）	149	3476	1521	451	3476	1471	135	3476	1485	400	3476	1485
Peak－hour factor，PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj．Flow（vph）	62	698	116	215	1251	72	281	893	88	99	1270	56
RTOR Reduction（vph）	0	0	76	0	0	47	0	0	52	0	0	36
Lane Group Flow（vph）	62	698	40	215	1251	25	281	893	36	99	1270	20
Confl．Peds．（\＃／hr）	22					22	11		11	11		11
Turn Type	pm＋pt	NA	Perm									
Protected Phases	3			7	4		1	，		5	2	
Permitted Phases	8		8	4		4	6		6	2		2
Actuated Green，G（s）	52.1	48.1	48.1	54.1	49.1	49.1	68.9	56.9	56.9	58.9	49.9	49.9
Effective Green， g （s）	52.1	48.1	48.1	54.1	49.1	49.1	68.9	56.9	56.9	58.9	49.9	49.9
Actuated g／C Ratio	0.37	0.34	0.34	0.39	0.35	0.35	0.49	0.41	0.41	0.42	0.36	0.36
Clearance Time（s）	3.0	7.5	7.5	3.0	7.5	7.5	3.0	7.5	7.5	3.0	7.5	7.5
Vehicle Extension（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap（vph）	99	1194	522	218	1219	515	245	1412	603	251	1238	529
v／s Ratio Prot	0.02	0.20		c0．04	c0．36		c0．13	0.26		0.03	0.37	
v／s Ratio Perm	0.21		0.03	0.34		0.02	c0．43		0.02	0.14		0.01
v／c Ratio	0.63	0.58	0.08	0.99	1.03	0.05	1.15	0.63	0.06	0.39	1.03	0.04
Uniform Delay，d1	35.8	37.7	31.0	43.7	45.5	30.0	45.0	33.2	25.3	25.9	45.0	29.4
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.51	1.03	2.08	0.36	0.60	1.00
Incremental Delay，d2	16.2	1.1	0.1	56.9	32.7	0.1	95.1	1.6	0.1	0.9	23.3	0.1
Delay（s）	52.0	38.9	31.1	100.6	78.1	30.1	163.0	35.7	52.7	10.2	50.3	29.4
Level of Service	D	D	C	F	E	C	F	D	D	B	D	C
Approach Delay（s）		38.8			79.0			65.3			46.7	
Approach LOS		D			E			E			D	
Intersection Summary												
HCM 2000 Control Delay			59.7		HCM 2000	Level of	Service		E			
HCM 2000 Volume to Capacity ratio			1.12									
Actuated Cycle Length（s）			140.0		Sum of lost	time（s）			21.0			
Intersection Capacity Utilization			109．7\％		CU Level	of Service			H			
Analysis Period（min）			15									

c Critical Lane Group

	Synchro 9
Existing_PM.syn	Page 12

c Critical Lane Group

APPENDIX B2

UNSIGNALIZED INTERSECTIONS

2016 AM PEAK HOUR

	4	\%	4		\dagger	\pm		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	${ }^{*}$	F'	${ }^{7}$	中4	中 ${ }^{\text {c }}$			
Traffic Volume (veh/h)	18	34	22	1333	1515	57		
Future Volume (Veh/h)	18	34	22	1333	1515	57		
Sign Control	Stop			Free	Free			
Grade	0\%			0\%	0\%			
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Hourly flow rate (vph)	18	34	22	1333	1515	57		
Pedestrians	10			5	5			
Lane Width (m)	3.5			3.6	3.7			
Walking Speed (m/s)	1.2			1.2	1.2			
Percent Blockage	1			0	0			
Right turn flare (veh)								
Median type				Raised	None			
Median storage veh)				1				
Upstream signal (m)				276				
pX, platoon unblocked	0.72							
vC , conflicting volume	2269	801	1582					
$\mathrm{vC1}$, stage 1 conf vol	1554							
vC 2 , stage 2 conf vol	716							
vCu, unblocked vol	1984	801	1582					
tC , single (s)	7.0	7.0	4.3					
tC, 2 stage (s)	6.0							
tF (s)	3.6	3.4	2.3					
p0 queue free \%	85	89	94					
cM capacity (veh/h)	117	315	373					
Direction, Lane \#	EB 1	EB 2	NB 1	NB 2	NB 3	SB 1	SB 2	
Volume Total	18	34	22	666	666	1010	562	
Volume Left	18	0	22	0	0	0	0	
Volume Right	0	34	0	0	0	0	57	
cSH	117	315	373	1700	1700	1700	1700	
Volume to Capacity	0.15	0.11	0.06	0.39	0.39	0.59	0.33	
Queue Length 95th (m)	3.7	2.5	1.3	0.0	0.0	0.0	0.0	
Control Delay (s)	41.2	17.8	15.3	0.0	0.0	0.0	0.0	
Lane LOS	E	C	C					
Approach Delay (s)	25.9		0.2			0.0		
Approach LOS D								
Intersection Summary								
Average Delay			0.6					
Intersection Capacity Utilization			54.1\%	ICU Level of Service				A
Analysis Period (min)		15						

	4	\rightarrow	\checkmark	\％		4	4	\dagger	1	6	\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	7	${ }^{*}$		「	${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{7}$	中 ${ }^{\text {a }}$	
Traffic Volume（veh／h）	9	0	8	9	0	2	17	1306	9	8	1491	29
Future Volume（Veh／h）	9	0	8	9	0	2	17	1306	9	8	1491	29
Sign Control		Stop			Stop			Free			Free	
Grade		0\％			0\％			0\％			0\％	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate（vph）	9	0	8	9	0	2	17	1306	9	8	1491	29
Pedestrians		6			5			5			5	
Lane Width（m）		3.6			3.5			3.6			3.6	
Walking Speed（ m / s ）		1.2			1.2			1.2			1.2	
Percent Blockage		1			0			0			0	
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（m）												
pX，platoon unblocked												
vC ，conflicting volume	2222	2882	771	2124	2892	668	1526			1320		
$\mathrm{vC1}$ ，stage 1 conf vol												
vC2，stage 2 conf vol												
vCu ，unblocked vol	2222	2882	771	2124	2892	668	1526			1320		
tC，single（s）	7.9	6.6	7.7	9.1	6.6	7.9	4.2			4.9		
tC， 2 stage（s）												
tF（s）	3.7	4.0	3.7	4.3	4.0	3.8	2.2			2.6		
p0 queue free \％	47	100	97	10	100	99	96			98		
cM capacity（veh／h）	17	14	272	10	14	303	416			362		
Direction，Lane \＃	EB 1	EB 2	WB 1	WB 2	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3		
Volume Total	9	8	9	2	17	871	444	8	994	526		
Volume Left	9	0	9	0	17	0	0	8	0	0		
Volume Right	0	8	0	2	0	0	9	0	0	29		
cSH	17	272	10	303	416	1700	1700	362	1700	1700		
Volume to Capacity	0.53	0.03	0.90	0.01	0.04	0.51	0.26	0.02	0.58	0.31		
Queue Length 95th（m）	9.8	0.6	12.4	0.1	0.9	0.0	0.0	0.5	0.0	0.0		
Control Delay（s）	355.4	18.7	722.3	17.0	14.0	0.0	0.0	15.2	0.0	0.0		
Lane LOS	F	C	F	C	B			C				
Approach Delay（s）	196.9		594.1		0.2			0.1				
Approach LOS	F		F									
Intersection Summary												
Average Delay			3.5									
Intersection Capacity Utilization			60．7\％		U Level	Service			B			
Analysis Period（min）			15									

	4	\%	4		\downarrow	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	*		${ }^{1 /}$	44	44		
Traffic Volume (veh/h)	35	36	30	1333	1346	14	
Future Volume (Veh/h)	35	36	30	1333	1346	14	
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	35	36	30	1333	1346	14	
Pedestrians	4			5	5		
Lane Width (m)	3.5			3.6	3.7		
Walking Speed (m/s)	1.2			1.2	1.2		
Percent Blockage	0			0	0		
Right turn flare (veh)							
Median type				WLTL	TWLTL		
Median storage veh)				2	2		
Upstream signal (m)				366			
pX, platoon unblocked	0.67						
vC , conflicting volume	2088	689	1364				
$\mathrm{vC1}$, stage 1 conf vol	1357						
vC 2 , stage 2 conf vol	732						
vCu , unblocked vol	1648	689	1364				
tC , single (s)	6.9	7.0	4.2				
tC, 2 stage (s)	5.9						
tF (s)	3.5	3.3	2.2				
p0 queue free \%	81	90	94				
cM capacity (veh/h)	187	378	483				
Direction, Lane \#	EB 1	NB 1	NB 2	NB 3	SB 1	SB 2	
Volume Total	71	30	666	666	897	463	
Volume Left	35	30	0	0	0	0	
Volume Right	36	0	0	0	0	14	
cSH	252	483	1700	1700	1700	1700	
Volume to Capacity	0.28	0.06	0.39	0.39	0.53	0.27	
Queue Length 95th (m)	7.9	1.4	0.0	0.0	0.0	0.0	
Control Delay (s)	24.8	13.0	0.0	0.0	0.0	0.0	
Lane LOS	C	B					
Approach Delay (s)	24.8	0.3			0.0		
Approach LOS C							
Average Delay			0.8				
Intersection Capacity Utilization			48.5\%		CU Level	Service	A
Analysis Period (min)			15				

2016 PM PEAK HOUR

	4	\rightarrow	\checkmark	4		4	4	\dagger	1	（	\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	7	${ }^{*}$		「	${ }^{1}$	中 ${ }^{\text {a }}$		${ }^{7}$	中 ${ }^{\text {¢ }}$	
Traffic Volume（veh／h）	32	0	46	5	0	11	21	1344	3	6	1543	27
Future Volume（Veh／h）	32	0	46	5	0	11	21	1344	3	6	1543	27
Sign Control		Stop			Stop			Free			Free	
Grade		0\％			0\％			0\％			0\％	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate（vph）	32	0	46	5	0	11	21	1344	3	6	1543	27
Pedestrians		5			3			10			4	
Lane Width（m）		3.6			3.6			3.6			3.6	
Walking Speed（ m / s ）		1.2			1.2			1.2			1.2	
Percent Blockage		0			0			1			0	
Right turn flare（veh）												
Median type								None			None	
Median storage veh）												
Upstream signal（m）												
pX，platoon unblocked												
vC ，conflicting volume	2302	2966	800	2230	2978	680	1575			1350		
$\mathrm{vC1}$ ，stage 1 conf vol												
vC2，stage 2 conf vol												
vCu ，unblocked vol	2302	2966	800	2230	2978	680	1575			1350		
tC，single（s）	7.6	6.6	7.0	7.6	6.6	7.0	4.2			4.2		
tC， 2 stage（s）												
tF（s）	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \％	0	100	86	72	100	97	95			99		
cM capacity（veh／h）	18	12	318	18	12	384	399			489		
Direction，Lane \＃	EB 1	EB 2	WB 1	WB 2	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3		
Volume Total	32	46	5	11	21	896	451	6	1029	541		
Volume Left	32	0	5	0	21	0	0	6	0	0		
Volume Right	0	46	0	11	0	0	3	0	0	27		
cSH	18	318	18	384	399	1700	1700	489	1700	1700		
Volume to Capacity	1.76	0.14	0.28	0.03	0.05	0.53	0.27	0.01	0.61	0.32		
Queue Length 95th（m）	31.1	3.5	5.4	0.6	1.2	0.0	0.0	0.3	0.0	0.0		
Control Delay（s）	808.2	18.2	267.2	14.7	14.5	0.0	0.0	12.5	0.0	0.0		
Lane LOS	F	C	F	B	B			B				
Approach Delay（s）	342.3		93.6		0.2			0.0				
Approach LOS	F		F									
Intersection Summary												
Average Delay			9.4									
Intersection Capacity Utilization			64．7\％		U Level	Service			C			
Analysis Period（min）			15									

	*	7	4		\dagger	\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	* ${ }^{\prime}$		${ }^{7}$	44	44		
Traffic Volume (veh/h)	12	24	22	1218	1327	32	
Future Volume (Veh/h)	12	24	22	1218	1327	32	
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	12	24	22	1218	1327	32	
Pedestrians	6						
Lane Width (m)	3.7						
Walking Speed (m/s)	1.2						
Percent Blockage	1						
Right turn flare (veh)							
Median type				TWLTL	TWLTL		
Median storage veh)				2	2		
Upstream signal (m)				366			
pX, platoon unblocked	0.68						
vC , conflicting volume	2002	686	1365				
$\mathrm{vC1}$, stage 1 conf vol	1349						
vC 2 , stage 2 conf vol	653						
vCu , unblocked vol	1524	686	1365				
tC , single (s)	6.9	7.0	4.2				
tC, 2 stage (s)	5.9						
tF (s)	3.5	3.3	2.2				
p0 queue free \%	94	94	95				
cM capacity (veh/h)	190	381	481				
Direction, Lane \#	EB 1	NB 1	NB 2	NB 3	SB 1	SB 2	
Volume Total	36	22	609	609	885	474	
Volume Left	12	22	0	0	0	0	
Volume Right	24	0	0	0	0	32	
cSH	286	481	1700	1700	1700	1700	
Volume to Capacity	0.13	0.05	0.36	0.36	0.52	0.28	
Queue Length 95th (m)	3.0	1.0	0.0	0.0	0.0	0.0	
Control Delay (s)	19.4	12.8	0.0	0.0	0.0	0.0	
Lane LOS	C	B					
Approach Delay (s)	19.4	0.2			0.0		
Approach LOS C							
Intersection Summary							
Average Delay			0.4				
Intersection Capacity Utilization			47.7\%				A
Analysis Period (min)			15	ICU Level of Service			

APPENDIX C

BASE CONDITION
 FUTURE (2031) AM \& PM PEAK HOUR
 LEVEL OF SERVICE ANALYSIS (SYNCHRO 9 OUTPUT)

APPENDIX C1

SIGNALIZED INTERSECTIONS

2031 AM PEAK HOUR

Analysis Period (min)
c Critical Lane Group

C Critical Lane Group

C Critical Lane Group

| | | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

C Critical Lane Group

c Critical Lane Group

c Critical Lane Group

2031 PM PEAK HOUR

C Critical Lane Group

C Critical Lane Group

c Critical Lane Group

	4	\rightarrow		7		4	4	4	\％		\ddagger	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	性中		7\％	种		${ }^{7}$	种		1	性中	
Traffic Volume（vph）	165	588	222	646	1768	228	299	1181	168	220	1543	104
Future Volume（vph）	165	588	222	646	1768	228	299	1181	168	220	1543	104
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time（s）	5.0	6.9		5.0	6.9		5.0	7.5		5.0	7.5	
Lane Util．Factor	1.00	0.91		0.97	0.91		1.00	0.91		0.97	0.91	
Frt	1.00	0.96		1.00	0.98		1.00	0.98		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd．Flow（prot）	1700	4790		3298	4909		1700	4902		3298	4948	
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd．Flow（perm）	1700	4790		3298	4909		1700	4902		3298	4948	
Peak－hour factor，PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj．Flow（vph）	165	588	222	646	1768	228	299	1181	168	220	1543	104
RTOR Reduction（vph）	0	49	0	0	12	0	0	13	0	0	5	0
Lane Group Flow（vph）	165	761	0	646	1984	0	299	1336	0	220	1642	0
Turn Type	Prot	NA										
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases												
Actuated Green，G（s）	11.0	30.2		29.9	49.1		10.0	47.5		8.0	45.5	
Effective Green，g（s）	11.0	30.2		29.9	49.1		10.0	47.5		8.0	45.5	
Actuated g／C Ratio	0.08	0.22		0.21	0.35		0.07	0.34		0.06	0.32	
Clearance Time（s）	5.0	6.9		5.0	6.9		5.0	7.5		5.0	7.5	
Vehicle Extension（s）	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Lane Grp Cap（vph）	133	1033		704	1721		121	1663		188	1608	
v／s Ratio Prot	c0．10	0.16		0.20	c0．40		c0．18	0.27		0.07	c0．33	
v／s Ratio Perm												
v／c Ratio	1.24	0.74		0.92	1.15		2.47	0.80		1.17	1.02	
Uniform Delay，d1	64.5	51.2		53.8	45.5		65.0	42.0		66.0	47.2	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		0.78	1.41	
Incremental Delay，d2	156.5	3.4		17.6	76.0		686.1	4.2		113.5	25.9	
Delay（s）	221.0	54.6		71.4	121.4		751.1	46.2		164.7	92.6	
Level of Service	F	D		E	F		F	D		F	F	
Approach Delay（s）		82.7			109.2			174.1			101.1	
Approach LOS		F			F			F			F	
Intersection Summary												
HCM 2000 Control Delay			118.5		HCM 2000	evel of	ervice		F			
HCM 2000 Volume to Capacity ratio			1.22									
Actuated Cycle Length（s）			140.0		Sum of los	ime（s）			24.4			
Intersection Capacity Utilization			117．4\％		CU Level	Service			H			
Analysis Period（min）			15									
C Critical Lane Group												

C Critical Lane Group

c Critical Lane Group

C Critical Lane Group

C Critical Lane Group

	\rangle			7			4	\dagger	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	性	F	\％	¢ \uparrow	「	\％	个4	F	\％	个 \uparrow	F
Traffic Volume（vph）	70	790	131	243	1416	82	318	1011	100	112	1438	63
Future Volume（vph）	70	790	131	243	1416	82	318	1011	100	112	1438	63
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time（s）	3.0	7.5	7.5	3.0	7.5	7.5	3.0	7.5	7.5	3.0	7.5	7.5
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb，ped／bikes	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	0.98	1.00	1.00	0.98
Flpb，ped／bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）	1700	3476	1521	1700	3476	1471	1700	3476	1485	1700	3476	1485
Flt Permitted	0.09	1.00	1.00	0.19	1.00	1.00	0.08	1.00	1.00	0.12	1.00	1.00
Satd．Flow（perm）	155	3476	1521	333	3476	1471	140	3476	1485	218	3476	1485
Peak－hour factor，PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj．Flow（vph）	70	790	131	243	1416	82	318	1011	100	112	1438	63
RTOR Reduction（vph）	0	0	88	0	0	54	0	0	53	0	0	41
Lane Group Flow（vph）	70	790	43	243	1416	28	318	1011	47	112	1438	22
Confl．Peds．（\＃／hr）	22					22	11		11	11		11
Turn Type	pm＋pt	NA	Perm									
Protected Phases	3			7	4		1	－		5	2	
Permitted Phases	8		8	4		4	6		6	2		2
Actuated Green，G（s）	54.0	46.1	46.1	58.2	48.2	48.2	64.2	51.2	51.2	61.6	49.9	49.9
Effective Green， g （s）	54.0	46.1	46.1	58.2	48.2	48.2	64.2	51.2	51.2	61.6	49.9	49.9
Actuated g／C Ratio	0.39	0.33	0.33	0.42	0.34	0.34	0.46	0.37	0.37	0.44	0.36	0.36
Clearance Time（s）	3.0	7.5	7.5	3.0	7.5	7.5	3.0	7.5	7.5	3.0	7.5	7.5
Vehicle Extension（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap（vph）	146	1144	500	236	1196	506	209	1271	543	219	1238	529
v／s Ratio Prot	0.03	0.23		c0．07	c0．41		c0．14	0.29		0.04	0.41	
v／s Ratio Perm	0.16		0.03	0.35		0.02	c0．56		0.03	0.18		0.02
v／c Ratio	0.48	0.69	0.09	1.03	1.18	0.06	1.52	0.80	0.09	0.51	1.16	0.04
Uniform Delay，d1	34.1	40.8	32.4	36.5	45.9	30.7	42.9	39.7	29.1	27.2	45.0	29.4
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.81	1.26	2.21	1.90	1.21	3.94
Incremental Delay，d2	5.1	2.3	0.2	66.5	91.5	0.1	246.5	2.7	0.2	0.4	73.6	0.0
Delay（s）	39.2	43.1	32.6	103.0	137.4	30.8	281.1	52.8	64.4	52.1	128.0	116.1
Level of Service	D	D	C	F	F	C	F	D	E	D	F	F
Approach Delay（s）		41.4			127.6			104.5			122.3	
Approach LOS		D			F			F			F	
Intersection Summary												
HCM 2000 Control Delay			105.6		HCM 2000	Level of	Service		F			
HCM 2000 Volume to Capacity ratio			1.39									
Actuated Cycle Length（s）			140.0		Sum of lost	time（s）			21.0			
Intersection Capacity Utilization			119．8\％		CU Level	of Service			H			
Analysis Period（min）			15									

c Critical Lane Group

c Critical Lane Group

APPENDIX C2

UNSIGNALIZED INTERSECTIONS

2031 AM PEAK HOUR

	4	\%	4		\dagger	\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	${ }^{1 /}$	「'	${ }^{1 /}$	44	44		
Traffic Volume (veh/h)	35	36	30	1509	1524	14	
Future Volume (Veh/h)	35	36	30	1509	1524	14	
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	35	36	30	1509	1524	14	
Pedestrians	4			5	5		
Lane Width (m)	3.5			3.6	3.7		
Walking Speed (m/s)	1.2			1.2	1.2		
Percent Blockage	0			0	0		
Right turn flare (veh)		1					
Median type				WLTL	TWLTL		
Median storage veh)				2	2		
Upstream signal (m)				366			
pX, platoon unblocked	0.59						
vC , conflicting volume	2354	778	1542				
$\mathrm{vC1}$, stage 1 conf vol	1535						
vC 2 , stage 2 conf vol	820						
vCu, unblocked vol	1908	778	1542				
tC , single (s)	6.9	7.0	4.2				
tC, 2 stage (s)	5.9						
tF (s)	3.5	3.3	2.2				
p0 queue free \%	77	89	93				
cM capacity (veh/h)	149	330	411				
Direction, Lane \#	EB 1	NB 1	NB 2	NB 3	SB 1	SB 2	
Volume Total	71	30	754	754	1016	522	
Volume Left	35	30	0	0	0	0	
Volume Right	36	0	0	0	0	14	
cSH	303	411	1700	1700	1700	1700	
Volume to Capacity	0.23	0.07	0.44	0.44	0.60	0.31	
Queue Length 95th (m)	6.2	1.6	0.0	0.0	0.0	0.0	
Control Delay (s)	26.7	14.4	0.0	0.0	0.0	0.0	
Lane LOS	D	B					
Approach Delay (s)	26.7	0.3			0.0		
Approach LOS	D						
Intersection Summary							
Average Delay			0.7				
Intersection Capacity Utilization			52.6\%	ICU Level of Service			A
Analysis Period (min)			15				

2031 PM PEAK HOUR

	4		4		$\frac{1}{\star}$	\pm	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	${ }^{7}$	「'	${ }^{7}$	44	44		
Traffic Volume (veh/h)	12	24	22	1379	1502	32	
Future Volume (Veh/h)	12	24	22	1379	1502	32	
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	12	24	22	1379	1502	32	
Pedestrians	6						
Lane Width (m)	3.5						
Walking Speed (m/s)	1.2						
Percent Blockage	0						
Right turn flare (veh)		1					
Median type				WLTL	TWLTL		
Median storage veh)				2	2		
Upstream signal (m)				366			
pX, platoon unblocked	0.63						
vC , conflicting volume	2258	773	1540				
$\mathrm{vC1}$, stage 1 conf vol	1524						
vC 2 , stage 2 conf vol	734						
vCu , unblocked vol	1817	773	1540				
tC , single (s)	6.9	7.0	4.2				
tC, 2 stage (s)	5.9						
tF (s)	3.5	3.3	2.2				
p0 queue free \%	92	93	95				
cM capacity (veh/h)	152	334	411				
Direction, Lane \#	EB 1	NB 1	NB 2	NB 3	SB 1	SB 2	
Volume Total	36	22	690	690	1001	533	
Volume Left	12	22	0	0	0	0	
Volume Right	24	0	0	0	0	32	
cSH	457	411	1700	1700	1700	1700	
Volume to Capacity	0.08	0.05	0.41	0.41	0.59	0.31	
Queue Length 95th (m)	1.8	1.2	0.0	0.0	0.0	0.0	
Control Delay (s)	21.3	14.2	0.0	0.0	0.0	0.0	
Lane LOS	C	B					
Approach Delay (s)	21.3	0.2			0.0		
Approach LOS C							
Intersection Summary							
Average Delay			0.4				
Intersection Capacity Utilization			52.6\%				A
Analysis Period (min)			15	ICU Level of Service			

	7		\dagger	p		\downarrow		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	M		个4	F	\%	个 \uparrow		
Traffic Volume (veh/h)	15	63	1439	27	55	1672		
Future Volume (Veh/h)	15	63	1439	27	55	1672		
Sign Control	Stop		Free			Free		
Grade	0\%		0\%			0\%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Hourly flow rate (vph)	15	63	1439	27	55	1672		
Pedestrians	5							
Lane Width (m)	3.5							
Walking Speed (m / s)	1.2							
Percent Blockage	0							
Right turn flare (veh)								
Median type			TWLTL			TWLTL		
Median storage veh)			2			2		
Upstream signal (m)						348		
pX, platoon unblocked	0.66							
VC , conflicting volume	2390	724			1471			
$\mathrm{vC1}$, stage 1 conf vol	1444							
$\mathrm{vC2}$, stage 2 conf vol	946							
$\mathrm{vCu}, \mathrm{unblocked} \mathrm{vol}$	2074	724			1471			
tC , single (s)	6.9	7.0			4.2			
$\mathrm{tC}, 2$ stage (s)	5.9							
tF (s)	3.5	3.3			2.2			
p0 queue free \%	91	82			87			
cM capacity (veh/h)	165	360			438			
Direction, Lane \#	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3	
Volume Total	78	720	720	27	55	836	836	
Volume Left	15	0	0	0	55	0	0	
Volume Right	63	0	0	27	0	0	0	
cSH	293	1700	1700	1700	438	1700	1700	
Volume to Capacity	0.27	0.42	0.42	0.02	0.13	0.49	0.49	
Queue Length 95th (m)	7.3	0.0	0.0	0.0	3.0	0.0	0.0	
Control Delay (s)	21.7	0.0	0.0	0.0	14.4	0.0	0.0	
Lane LOS	C				B			
Approach Delay (s)	21.7	0.0			0.5			
Approach LOS	C							
Intersection Summary								
Average Delay			0.8					
Intersection Capacity Utilization			57.6\%				ICU Level of Service	B
Analysis Period (min)			15					

APPENDIX D

POTENTIAL IMPROVEMENTS/ MITIGATION FUTURE (2031) AM \& PM PEAK HOUR
 LEVEL OF SERVICE ANALYSIS (SYNCHRO 9 OUTPUT)

APPENDIX D1

AUXILARY RIGHT-TURN LANE WARRANT ASSESSMENT

Intersection Approach	Current Lane Configuration	Configuration with Added Auxiliary RightTurn Lane	2031 Right-Turn Volume during Critical Approach Conditions	Volume/ Capacity during Critical Peak Hour			Notes on Constructability	Recommended Measure
				VIC for Shared Through-Right (current lane configuration)	VIC for Exclusive Through (with added right-turn lane)	VIC for Exclusive Right-Turn (with added right-turn lane)		
EASTGATE PARKWAY								
Northbound	1L 1T 1TR	1L 2T 1R	139 vph (a.m.) (65 vph p.m.)	1.06 (a.m.)	1.02	0.23	- Appears to be sufficient property available on the SE corner. - No conflicts with cycling lanes at this intersection. - Minor impacts include relocation of electrical MH , light standards.	Recommended
MEADOWS BOULEVARD								
Southbound	1T 1TR	2T 1R	$\begin{gathered} 247 \text { vph (p.m.) } \\ (-- \text { vph a.m. }) \end{gathered}$	0.69 (p.m.)	0.60	0.18	Without the exclusive right-turn lane, the SBTR movement is still projected to operate well below capacity despite the rightturning traffic. - May be being used as a cut-through route in the p.m. to avoid congestion on Hwy-403 (SBR volume is 247 vph in p.m., EBL volume is 123 vph in a.m.). - Requires relocation of a hydro pole. - The 3.5 m wide multi-use path adjacent to the curb at the northwest quadrant will need to be relocated. - Requires re-grading and extension of existing 0.3 m diameter CSP culvert. - Minor impacts include relocation of electrical MH, light standards.	Not recommended
RATHBURN ROAD								
Northbound	1L 1T 1TR	1L 2T 1R	197 vph (a.m.) (102 vph p.m.)	0.75 (a.m.)	0.63	0.24	- Without the exclusive right-turn lane, the NBTR movement is still projected to operate below capacity despite the rightturning traffic. - Impacts to overhead hydro impacts. - A retaining wall would be required due to grade difference between the curb and noise wall. - Minor impacts include relocation of Bell MH.	Not recommended
Southbound	1L 1T 1TR	1L 2T 1R	151 vph (p.m.) (27 vph a.m.)	1.04 (p.m.)	1.03	0.22	- Impacts to residences fronting Cawthra Rd, including reduction of driveway space. However property takings would be minimal (or not required) given the wide boulevards. - Minor impacts include relocation of light standards.	Recommended
Eastbound	1L 1T 1TR	1L 2T 1R	148 vph (a.m.) (88 vph p.m.)	0.94 (a.m.)	0.76	0.32	- Requires property takings from gas station. Impacts to a major overhead hydro line, forestry impacts. Minor impacts include relocation of Bell MH, light standards.	Not recommended
Westbound	1L 1T 1TR	1L 2T 1R	76 vph (p.m.) (127 vph a.m., but WBT not critical)	1.14 (p.m.)	1.08	0.16	- Intersection was recently reconstructed. A right turn lane was temporally provided during construction and has since been removed. - Insufficient right-of-way available for standard right turn lane treatment (i.e. lane width) and boulevard	Not recommended

Intersection Approach	Current Lane Configuration	Configuration with Added Auxiliary RightTurn Lane	2031 Right-Turn Volume during Critical Approach Conditions	Volume/ Capacity during Critical Peak Hour			Notes on Constructability	Recommended Measure
				VIC for Shared Through-Right (current lane configuration)	VIC for Exclusive Through (with added right-turn lane)	VIC for Exclusive Right-Turn (with added right-turn lane)		
BLOOR STREET								
Northbound	1L 1T 1TR	1L 2T 1R	172 (p.m.) (212 vph a.m., but NBT not critical)	0.99 (p.m.)	0.90	0.23	Impacts to overhead hydro. Requires relocation of a hydro pole at the southeast corner. Property takings ($\pm 50 \mathrm{sq}-\mathrm{m}$) and impacts to residences on the southeast quadrant (may impact two properties that front onto Cawthra Rd, and one property that fronts onto Bloor St). Minor impacts include relocation of Bell facilities, light standards.	Recommended
SILVER CREEK BOULEVARD								
Southbound	1T 1TR	2T 1R	91 vph (p.m.) (37 vph a.m.)	0.92 (p.m.)	0.86	0.11	- Requires relocation of the portion of sidewalk located between the intersection and bus shelter, and light standards. Current bus bay location.	Not recommended
TEDWYN DRIVE								
Southbound	2T 1TR	3T 1R	54 vph (p.m.) (23 vph a.m.)	0.66 (p.m.)	0.64	0.05	- SBR volumes are low. - Without the exclusive right-turn lane, the SBTR movement is still projected to operate well below capacity despite the rightturning traffic. Impacts to major overhead hydro facility, forestry impacts. - Property takings required to accommodate the relocation of hydro poles and to provide daylight triangles. - Relocation of noise wall is required.	Not recommended
NORTH SERVICE ROAD								
Northbound	1L 1T 1TR	1L 2T 1R	179 vph (p.m.) (200 vph a.m., but NBT less critical)	1.04 (p.m.)	0.91	0.24	- Minor impacts include relocation of light standards.	Recommended
Southbound	1L 2T 1TR	1L 3T 1R	91 vph (p.m.)	$\underline{1.33}$ (p.m.)	1.27	0.15	Possible impacts to a major overhead hydro facility (exclusive right-turn lane may avoid impacts to overhead hydro if the sidewalk is placed between poles; however, this may not be feasible if a bike lane is added). Relatively low right turn volumes and limited benefit unless extended to allow by-pass of lengthy southbound queue.	Not recommended
Eastbound	1L 1TR	1L 1T 1R	246 vph (a.m.)	0.84 (a.m.)	0.49	0.63	Without the exclusive right-turn lane, the EBTR movement is still projected to operate below capacity despite the rightturning traffic. Geometry constraints given the tight curvature along the EB approach, and with the right-turn lane needing to be located on the inside curve. Minor impacts include relocation of light standards.	Not recommended
Westbound	1L 1TR	1L 1T 1R	$\begin{gathered} 223 \text { vph (p.m.) } \\ (603 \text { Thru) } \end{gathered}$	1.04 (p.m.)	0.82	0.35	- Impacts to existing retaining wall, and requires property in the northeast quadrant.	Not recommended (largely due to property impacts)

Intersection Approach	Current Lane Configuration	Configuration with Added Auxiliary RightTurn Lane	2031 Right-Turn Volume during Critical Approach Conditions	Volume/ Capacity during Critical Peak Hour			Notes on Constructability	Recommended Measure
				VIC for Shared Through-Right (current lane configuration)	VIC for Exclusive Through (with added right-turn lane)	VIC for Exclusive Right-Turn (with added right-turn lane)		
							Widening potentially encroaches into hydro and utility corridor (containing high pressure pipeline) - Requires relocation/removal of bus shelter.	
SOUTH SERVICE ROAD								
Northbound	1L 1T TR	1L 2T 1R	79 vph (a.m.) (44 vph p.m.)	1.08	1.02	0.12	- NBR volumes are fairly low / limited benefit. - Property required to provide sufficient daylighting at southeast quadrant. - Will impact Environmentally Significant Area (ESA) - Requires relocation of bus shelter, light standards	Not recommended
Southbound	1L 1T 1TR	1L 2T 1R	$383 \mathrm{vph}($ p.m. $)$ (112 vph a.m.)	1.09	0.89	0.41	- High volume right turn - Minor impacts include relocation of light standards.	Recommended
Eastbound	1L 1TR	1L 1T 1R	$58 \mathrm{vph}(\mathrm{p} . \mathrm{m}$. 40 vph (a.m.)	0.61	0.54	0.08	- EBR volumes are low in both a.m. and p.m. - Without the exclusive right-turn lane, the EBTR movement is still projected to operate well below capacity despite the rightturning traffic. - Requires relocation of hydro pole if total length (combined parallel \& taper) of the right-turn lane exceeds 55 m . - Minor impacts include relocation of light standards, controller box.	Not recommended
Westbound	1L 1TR	1L 1T 1R	323 vph (p.m.) 127 Thru (273 vph a.m.; 40 vph WBT)	0.78	0.39	0.69	- Geometry constraints given the tight curvature along the WB approach, and with the right-turn lane needing to be located on the inside curve. - Requires relocation of hydro pole if the total length (combined parallel \& taper) of the right-turn lane exceeds 50 m . - Minor impacts include relocation of light standards.	Not recommended

APPENDIX D2

REVIEW OF ALTERNATIVE

 INTERSECTION LANE CONFIGUATIONSCASE I - CAWTHRA ROAD/ BLOOR STREET INTERSECTION Provide WB dual left-turn lanes

Existing WB approach configuration: 1L, 2T, 1R
Tested WB approach configuration: 2L, 1T, 1TR

BLOOR STREET \& CAWTHRA ROAD INTERSECTION										
SCENARIO	AM PEAK					PM PEAK				
	Overall Los		cted	ovem	nts		Aff	cted	ovem	nts
		Mvmt	LOS	VIC	95\%ile Queue	LOS	Mvmt	LOS	VIC	95\%ile Queue
Existing: Bloor Street WB approach with 1L, 2T, 1R	D	WBL	F	1.08	109m	D	WBL	F	1.01	152m
		WBT	D	0.49	54m		WBT	E	0.94	173m
		WBR	A	0.04	Om		WBR	A	0.10	Om
		EBT	F	1.02	118m		EBT	E	0.79	73m
		NBT	B	0.73	185m		NBT	E	0.90	224m
		SBT	D	0.66	190m		SBT	C	0.90	60m
Tested: Bloor Street WB approach with 2L, 1T, 1TR	D	WBL	D	0.81	56m	D	WBL	D	0.78	71m
		WBTR	D	0.52	65m		WBTR	E	0.99	202m
		EBT	E	0.84	105m		EBT	D	0.57	69m
		NBT	C	0.77	191m		NBT	E	0.95	234m
		SBT	D	0.83	207m		SBT	D	0.97	71m

Notes:

- Fully protected dual lefts were implemented on the WB approach in an effort to reduce WBL queuing and improve overall intersection operations.
- The v/c ratio for the WBL movement improves greatly during both peak hour periods.
- Queues for the WBL movement are significantly shorter, with $95^{\text {th }}$ percentile queues reduced from 152 m to 71 m in the p.m. peak hour.
- EBT operations improve, while NBT and SBT operations slightly worsen.
- Average Intersection Delay was largely unchanged in the a.m. peak, and increased from 49.0 to 54.0 seconds in the p.m. peak.

Not recommended. Re-configuration of the Bloor St westbound approach to provide dual WBL is not recommended on a traffic operations basis. Average intersection delay remains largely unchanged in the a.m. peak and increases in the p.m. peak hour.

CASE II - CAWTHRA ROAD / RAMP TO DUNDAS INTERSECTION Eliminate split phase operation by removing EB dual lefts

Existing EB approach configuration (with split phasing): 1L, 1LT, 1R
Tested EB approach configuration (with no split phasing): $1 \mathrm{~L}, 1 \mathrm{~T}, 1 \mathrm{R}$

CAWTHRA ROAD AT RAMP TO DUNDAS										
SCENARIO	AM PEAK					PM PEAK				
	Overall LOS	Affected Movements				Overall LOS	Affected Movements			
		Mvmt	LOS	VIC	95\%ile Queue		Mvmt	LOS	VIC	95\%ile Queue
Existing: Split phase signal operation, dual EBL lanes	B	EBL	C	0.53	45m	D	EBL	E	0.77	89m
		EBTL	C	0.52	44m		EBTL	E	0.76	89m
Tested: Removal of split phasing, single EBL lane	C	EBL	D	0.82	109m	E	EBL	F	1.36	313 m
		EBT	C	0.00	1 m		EBT	D	0.00	2 m

Notes:

- Traffic volumes on the WB approach (south access to the church) and for the EBT movement are typically very low (apart from occasional event traffic for the church). In comparison, projected 2031 EBL volumes are 358 vph in the a.m. peak and 659 vph in the p.m. peak.
- Apart from eliminating the WB approach (and church accesses to the north), eliminating split phasing necessitates a removal of the fully protected dual EBL so that this movement can operate as a single left-turn lane under protected + permissive phasing.
- With only a single EBL lane, conditions deteriorate in both peak periods. In the p.m. peak, the v/c ratio was output as 1.36 and $95^{\text {th }}$ percentile queues reach 313 m .

Not recommended. A single EBL lane is not able to accommodate the projected p.m. left-turning volumes $(659 \mathrm{vph})$. The single EBL was modelled as having a v/c ratio of 1.36 in the p.m. peak.

CASE III - CAWTHRA ROAD I QUEENSWAY INTERSECTION Model with exclusive right-turn lanes on EB and WB approaches

Existing lane configuration:
Right-most lanes on EB and WB approaches are treated as shared through-right lanes

Tested lane configuration:

Right-most lanes on EB and WB approaches are treated as exclusive right-turn lanes
(Note: In both the existing and tested models, the right-most lane on the NB approach is treated as an exclusive right-turn, and the right-most lane on the SB approach is treated as a shared through-right)

QUEENSWAY \& CAWTHRA ROAD INTERSECTION										
SCENARIO	AM PEAK					PM PEAK				
	Overall LOS	Affected Movements				Overall LOS	Affected Movements			
		Mvmt	LOS	VIC	95\%ile Queue		Mvmt	LOS	VIC	95\%ile Queue
Existing: Right-most lanes on SB, EB, WB approaches treated as shared through-right	D	EBTR	E	0.95	142m	F	EBTR	D	0.74	81m
		WBTR	D	0.73	73m		WBTR	F	1.09	235m
		NBT	D	0.87	178m		NBT	F	1.03	208m
		SBTR	C	0.61	108m		SBTR	F	1.04	193m
Tested: Right-most lanes on EB and WB approaches treated as exclusive rightturn	D	EBT	E	0.95	166m	F	EBT	D	0.67	90m
		EBR	C	0.60	71m		EBR	B	0.44	36m
		WBT	D	0.66	81m		WBT	F	1.23	330m
		WBR	B	0.49	31 m		WBR	B	0.33	36 m
		NBT	D	0.91	195m		NBT	F	1.15	224m
		SBTR	C	0.63	110m		SBT	F	1.12	204m

Notes:

- In the a.m. peak, the intersection operates with a similar overall average intersection delay, however queues for the SBT and EBT movements increase with only two through lanes available. Conditions also worsen on the northbound approach as a result of signal optimization changes.
- In the p.m. peak, operations significantly worsen given the higher traffic volumes, and conditions for the SBT and WBT movements break down entirely. The output v/c ratios for the SBT and WBT movements are 1.34 and 1.37 , respectively. The output $95^{\text {th }}$ percentile queue lengths for the SBT and WBT movements 308 m and 351 m , respectively.
- Average intersection delay was reduced from 51.4 to 50.1 seconds in the a.m. peak, and increased from 82.3 to 109.5 seconds in the p.m. peak.

Not recommended. Constraining the EBT and WBT to two through-lanes (which is not how they were observed to operate at present) would result in a significant deterioration of operations in the p.m. peak hour.

POTENTIAL ROUNDABOUT AT CAWTHRA ROAD - BURNHAMTHORPE
\qquad

Horizon Year: Time Period:
\qquad

Note: Double-lane rounabout analysis assumes even entry lane utilization.
Proposed Lane Arrangement

Note: Double-lane rounabout analysis assumes even entry lane utilization.
Proposed Lane Arrangement

APPENDIX D3

SIGNALIZED INTERSECTION OPERATIONS (MITIGATED CONDITION)

2031 AM PEAK HOUR

APPENDIX D3 - Future (2031 AM Peak) Mitigated Condition - Recommended Improvements

Cawthra Rd Intersection	Intersection			Critical Movements				
	LOS	Delay (s)	V/C	Mvmt	LOS	Delay (s)	V/C Ratio	$\begin{aligned} & 95^{\text {th }} \\ & \text { Queue } \end{aligned}$
Eastgate Pkwy	F	81.3	1.20	NBL	F	138	1.09	\#113
				SBL	F	264	1.41	\#101
				EBT	F	94	1.10	\#295
				NBT	F	94	1.06	\#211
Meadows Blvd	A	6.7	0.51	--	--	--	--	--
Rathburn Rd	D	41.6	0.84	--	--	--	--	--
Burnhamthorpe Rd	E	80.5	$\underline{1.16}$	NBL	F	120	1.08	m\#84
				EBT	F	97	1.08	\#235
				WBL	F	191	1.25	\#87
				NBT	F	77	1.02	\#229
				SBL	F	155	1.06	m\#57
				SBT	F	83	1.08	\#200
Bloor St	E	57.2	0.95	--	--	--	--	--
Silver Creek Blvd	C	25.5	0.84	--	--	--	--	--
Ramp to Dundas	D	35.9	0.82	--	--	--	--	--
Queensway	D	53.9	0.92	--	--	--	--	--
Tedwyn Dr	A	8.5	0.60	--	--	--	--	--
North Service Rd	D	36.3	0.98	WBL	F	92	1.01	\#78
South Service Rd	E	66.9	1.21	SBL	F	168	1.21	\#108
				EBL	F	137	1.13	\#122
				NBT	F	84	1.08	\#240

\# reflects queue length after two cycles

Analysis Period (min)

	4		\bigcirc		4	\dagger		\ddagger	4
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个	${ }^{*}$	F	${ }^{1}$	中 ${ }^{\text {a }}$	${ }^{7}$	中4	T
Traffic Volume（vph）	290	325	24	40	24	1487	277	883	112
Future Volume（vph）	290	325	24	40	24	1487	277	883	112
Lane Group Flow（vph）	290	365	24	313	24	1566	277	883	112
Turn Type	Perm	NA	Perm	NA	Perm	NA	pm＋pt	NA	Perm
Protected Phases		8		4		6	5	2	
Permitted Phases	8		4		6		2		2
Detector Phase	8	8	4	4	6	6	5	2	2
Switch Phase									
Minimum Initial（s）	8.0	8.0	8.0	8.0	15.0	15.0	5.0	15.0	15.0
Minimum Split（s）	40.3	40.3	40.3	40.3	33.7	33.7	8.0	33.7	33.7
Total Split（s）	47.0	47.0	47.0	47.0	57.0	57.0	16.0	73.0	73.0
Total Split（\％）	39．2\％	39．2\％	39．2\％	39．2\％	47．5\％	47．5\％	13．3\％	60．8\％	60．8\％
Yellow Time（s）	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	4.0
All－Red Time（s）	3.3	3.3	3.3	3.3	2.7	2.7	0.0	2.7	2.7
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	7.3	7.3	7.3	7.3	6.7	6.7	3.0	6.7	6.7
Lead／Lag					Lag	Lag	Lead		
Lead－Lag Optimize？									
Recall Mode	None	None	None	None	Max	Max	None	Max	Max
v／c Ratio	1.14	0.61	0.11	0.47	0.10	1.08	1.19	0.46	0.13
Control Delay	136.3	38.4	29.8	11.1	22.7	83.0	152.0	17.1	4.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	136.3	38.4	29.8	11.1	22.7	83.0	152.0	17.1	4.5
Queue Length 50th（m）	～73．2	65.1	3.6	12.5	3.1	~ 200.1	～58．9	57.7	2.5
Queue Length 95th（m）	\＃122．4	94.4	9.7	34.8	8.5	\＃239．9	\＃108．0	72.1	10.0
Internal Link Dist（m）		154.1		138.3		251.6		70.1	
Turn Bay Length（m）	70.0		70.0		65.0		65.0		30.0
Base Capacity（vph）	255	595	215	672	241	1448	232	1920	878
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	1.14	0.61	0.11	0.47	0.10	1.08	1.19	0.46	0.13
Intersection Summary									

Cycle Length： 120
Actuated Cycle Length： 120
Natural Cycle： 115
Control Type：Actuated－Uncoordinated
～Volume exceeds capacity，queue is theoretically infinite．
Queue shown is maximum after two cycles．
\＃95th percentile volume exceeds capacity，queue may be longer．
Queue shown is maximum after two cycles．
Splits and Phases：49：Cawthra Rd \＆South Service Rd

	＊		4		\downarrow	\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	7\％	「		坐中	革		
Traffic Volume（vph）	425	160	0	1306	1156	0	
Future Volume（vph）	425	160	0	1306	1156	0	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	
Lane Width	3.5	3.5	3.7	3.7	3.7	3.7	
Total Lost time（s）	6.3	6.3		6.0	6.0		
Lane Util．Factor	0.97	0.91		0.91	0.95		
Frpb，ped／bikes	1.00	0.98		1.00	1.00		
Flpb，ped／bikes	1.00	1.00		1.00	1.00		
Frt	0.99	0.85		1.00	1.00		
Flt Protected	0.95	1.00		1.00	1.00		
Satd．Flow（prot）	3164	1251		4995	3476		
Flt Permitted	0.95	1.00		1.00	1.00		
Satd．Flow（perm）	3164	1251		4995	3476		
Peak－hour factor，PHF	1.00	1.00	1.00	1.00	1.00	1.00	
Adj．Flow（vph）	425	160	0	1306	1156	0	
RTOR Reduction（vph）	2	67	0	0	0	0	
Lane Group Flow（vph）	439	77	0	1306	1156	0	
Confl．Peds．（\＃／hr）	5	5	5			5	
Heavy Vehicles（\％）	9\％	14\％	5\％	5\％	5\％	5\％	
Turn Type	Prot	Perm		NA	NA		
Protected Phases	4			2	2		
Permitted Phases		4					
Actuated Green，G（s）	23.0	23.0		73.1	73.1		
Effective Green，g（s）	23.0	23.0		73.1	73.1		
Actuated g／C Ratio	0.21	0.21		0.67	0.67		
Clearance Time（s）	6.3	6.3		6.0	6.0		
Vehicle Extension（s）	5.0	5.0		5.0	5.0		
Lane Grp Cap（vph）	671	265		3368	2344		
v／s Ratio Prot	c0．14			0.26	c0．33		
v／s Ratio Perm		0.06					
v／c Ratio	0.65	0.29		0.39	0.49		
Uniform Delay，d1	39.1	35.9		7.8	8.6		
Progression Factor	1.00	1.00		1.00	1.00		
Incremental Delay，d2	3.1	1.3		0.3	0.7		
Delay（s）	42.1	37.1		8.1	9.4		
Level of Service	D	D		A	A		
Approach Delay（s）	40.9			8.1	9.4		
Approach LOS	D			A	A		
Intersection Summary							
HCM 2000 Control Delay			14.9		HCM 2000	evel of Service	B
HCM 2000 Volume to Capacity ratio			0.53				
Actuated Cycle Length（s）			108.4		Sum of los	ime（s）	12.3
Intersection Capacity Utilization			56．1\％		CU Level	Service	B
Analysis Period（min）			15				
c Critical Lane Group							

Queues
1: Cawthra Rd \& QEW EB Off-ramp

		V		
Lane Group	EBL	EBR	NBT	SBT
Lane Configurations	7*	「	4坐	44
Traffic Volume (vph)	425	160	1306	1156
Future Volume (vph)	425	160	1306	1156
Lane Group Flow (vph)	441	144	1306	1156
Turn Type	Prot	Perm	NA	NA
Protected Phases	4		2	2
Permitted Phases		4		
Detector Phase	4	4	2	2
Switch Phase				
Minimum Initial (s)	8.0	8.0	8.0	8.0
Minimum Split (s)	14.3	14.3	28.0	28.0
Total Split (s)	41.0	41.0	79.0	79.0
Total Split (\%)	34.2\%	34.2\%	65.8\%	65.8\%
Yellow Time (s)	4.0	4.0	4.0	4.0
All-Red Time (s)	2.3	2.3	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.3	6.3	6.0	6.0
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	None	None	Max	Max
v/c Ratio	0.66	0.43	0.39	0.49
Control Delay	43.6	20.1	8.6	10.0
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	43.6	20.1	8.6	10.0
Queue Length 50th (m)	40.4	10.5	36.4	51.2
Queue Length 95th (m)	55.0	28.5	54.6	80.1
Internal Link Dist (m)	232.9		53.5	128.5
Turn Bay Length (m)		140.0		
Base Capacity (vph)	1017	459	3369	2344
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.43	0.31	0.39	0.49
Intersection Summary				

Cycle Length: 120
Actuated Cycle Length: 108.4
Natural Cycle: 45
Control Type: Actuated-Uncoordinated

Splits and Phases: 1: Cawthra Rd \& QEW EB Off-ramp

[^4]Queues
2: Cawthra Rd \& QEW WB Off-ramp

Cycle Length: 120
Actuated Cycle Length: 112.3
Natural Cycle: 50
Control Type: Actuated-Uncoordinated

Splits and Phases: 2: Cawthra Rd \& QEW WB Off-ramp

Queues
3：Cawthra Rd \＆North Service Rd

	＊	\rightarrow	\downarrow	4	4	\dagger	\％	（	\dagger
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT
Lane Configurations	${ }^{1 /}$	\uparrow	${ }^{*}$	\uparrow	\％	中4	F゙	${ }^{1}$	性中
Traffic Volume（vph）	62	146	249	172	145	1447	200	42	1802
Future Volume（vph）	62	146	249	172	145	1447	200	42	1802
Lane Group Flow（vph）	62	392	249	264	145	1447	200	42	1844
Turn Type	Perm	NA	pm＋pt	NA	pm＋pt	NA	Perm	Perm	NA
Protected Phases		8	7	4	1	6			2
Permitted Phases	8		4		6		6	2	
Detector Phase	8	8	7	4	1	6	6	2	2
Switch Phase									
Minimum Initial（s）	8.0	8.0	5.0	8.0	5.0	8.0	8.0	8.0	8.0
Minimum Split（s）	41.6	41.6	8.0	41.6	8.0	34.3	34.3	34.3	34.3
Total Split（s）	41.6	41.6	13.0	54.6	10.0	65.4	65.4	55.4	55.4
Total Split（\％）	34．7\％	34．7\％	10．8\％	45．5\％	8．3\％	54．5\％	54．5\％	46．2\％	46．2\％
Yellow Time（s）	4.0	4.0	3.0	4.0	3.0	4.0	4.0	4.0	4.0
All－Red Time（s）	2.6	2.6	0.0	2.6	0.0	2.3	2.3	2.3	2.3
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	6.6	6.6	3.0	6.6	3.0	6.3	6.3	6.3	6.3
Lead／Lag	Lag	Lag	Lead		Lead			Lag	Lag
Lead－Lag Optimize？									
Recall Mode	Min	Min	Min	Min	None	Max	Max	Max	Max
v／c Ratio	0.23	0.84	0.97	0.41	0.85	0.80	0.24	0.58	0.86
Control Delay	35.3	49.0	75.8	26.5	61.7	28.0	5.7	63.5	35.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	12.6	0.0	0.0	0.0
Total Delay	35.3	49.0	75.8	26.5	61.7	40.6	5.7	63.5	35.2
Queue Length 50th（m）	10.1	63.7	35.4	36.8	15.7	129.0	5.2	6.6	126.9
Queue Length 95th（m）	20.8	97.7	\＃77．7	56.9	\＃52．2	168.8	17.2	\＃25．1	155.5
Internal Link Dist（m）		129.5		149.8		57.6			269.7
Turn Bay Length（m）	80.0		90.0		60.0		60.0	180.0	
Base Capacity（vph）	326	553	258	737	170	1803	837	72	2145
Starvation Cap Reductn	0	0	0	0	0	361	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.19	0.71	0.97	0.36	0.85	1.00	0.24	0.58	0.86
Intersection Summary									

Cycle Length： 120
Actuated Cycle Length： 114.2
Natural Cycle： 95
Control Type：Actuated－Uncoordinated
\＃95th percentile volume exceeds capacity，queue may be longer．
Queue shown is maximum after two cycles．
Splits and Phases：3：Cawthra Rd \＆North Service Rd

C Critical Lane Group

Queues
4: Cawthra Rd \& Tedwyn Dr

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 96.1 (80\%), Referenced to phase 2:SBT and 6:NBTL, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 4: Cawthra Rd \& Tedwyn Dr

Queues
6：Cawthra Rd \＆Queensway

	4	\rightarrow	7	4	4	9		，	1
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT
Lane Configurations	\％ 1	性中	＊＊	性\％	${ }^{17}$	44	「	${ }^{17}$	种\％
Traffic Volume（vph）	272	971	194	512	105	1236	526	282	1277
Future Volume（vph）	272	971	194	512	105	1236	526	282	1277
Lane Group Flow（vph）	272	1292	194	733	105	1236	526	282	1324
Turn Type	Prot	NA	Prot	NA	Prot	NA	Perm	Prot	NA
Protected Phases	3	8	7	4	1	6		5	2
Permitted Phases							6		
Detector Phase	3	8	7	4	1	6	6	5	2
Switch Phase									
Minimum Initial（s）	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
Minimum Split（s）	13.0	34.9	13.0	34.9	13.0	34.5	34.5	13.0	34.5
Total Split（s）	28.0	47.9	15.0	34.9	13.0	59.1	59.1	18.0	64.1
Total Split（\％）	20．0\％	34．2\％	10．7\％	24．9\％	9．3\％	42．2\％	42．2\％	12．9\％	45．8\％
Yellow Time（s）	3.0	4.0	3.0	4.0	3.0	4.0	4.0	3.0	4.0
All－Red Time（s）	2.0	2.9	2.0	2.9	2.0	3.5	3.5	2.0	3.5
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	5.0	6.9	5.0	6.9	5.0	7.5	7.5	5.0	7.5
Lead／Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag
Lead－Lag Optimize？									
Recall Mode	None	None	None	None	None	C－Max	C－Max	None	C－Max
v／c Ratio	0.62	0.89	0.83	0.65	0.56	0.96	0.77	0.92	0.66
Control Delay	63.5	54.3	90.9	47.4	76.1	61.3	31.4	76.0	39.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	63.5	54.3	90.9	47.4	76.1	61.3	31.4	76.0	39.3
Queue Length 50th（m）	34.3	111.3	25.6	56.5	13.7	161.7	74.2	36.8	126.7
Queue Length 95th（m）	46.2	129.5	\＃43．9	73.1	22.7	\＃204．7	118.2	m\＃55．3	139.9
Internal Link Dist（m）		166.8		126.1		142.3			132.1
Turn Bay Length（m）	160.0		100.0		80.0		70.0	80.0	
Base Capacity（vph）	541	1444	235	1132	188	1281	682	306	2010
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.50	0.89	0.83	0.65	0.56	0.96	0.77	0.92	0.66
Intersection Summary									

Cycle Length： 140
Actuated Cycle Length： 140
Offset： 0 （0\％），Referenced to phase 2：SBT and 6：NBT，Start of Green
Natural Cycle： 110
Control Type：Actuated－Coordinated
\＃95th percentile volume exceeds capacity，queue may be longer．
Queue shown is maximum after two cycles．
m Volume for 95 th percentile queue is metered by upstream signal．
Splits and Phases：6：Cawthra Rd \＆Queensway

10: Cawthra Rd \& Dundas St Ramp

Cycle Length: 140
Actuated Cycle Length: 140
Offset: 0 (0\%), Referenced to phase 2:SBTL and 6:NBT, Start of Green
Natural Cycle: 105
Control Type: Actuated-Coordinated
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 10: Cawthra Rd \& Dundas St Ramp

	4			4	4	$\frac{1}{1}$
Lane Group	EBL	EBT	EBR	NBL	NBT	SBT
Lane Configurations		\uparrow	「	${ }^{7}$	中4	中 ${ }^{\text {a }}$
Traffic Volume（vph）	107	0	381	133	1477	1753
Future Volume（vph）	107	0	381	133	1477	1753
Lane Group Flow（vph）	0	107	381	133	1477	1790
Turn Type	Perm	NA	Perm	pm＋pt	NA	NA
Protected Phases		4		1	6	2
Permitted Phases	4		4	6		
Detector Phase	4	4	4	1	6	2
Switch Phase						
Minimum Initial（s）	8.0	8.0	8.0	5.0	15.0	15.0
Minimum Split（s）	28.0	28.0	28.0	8.0	29.0	29.0
Total Split（s）	39.0	39.0	39.0	14.0	101.0	87.0
Total Split（\％）	27．9\％	27．9\％	27．9\％	10．0\％	72．1\％	62．1\％
Yellow Time（s）	4.0	4.0	4.0	3.0	4.0	4.0
All－Red Time（s）	2.0	2.0	2.0	0.0	2.0	2.0
Lost Time Adjust（s）		0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）		6.0	6.0	3.0	6.0	6.0
Lead／Lag				Lead		Lag
Lead－Lag Optimize？						
Recall Mode	None	None	None	None	C－Max	C－Max
v／c Ratio		0.37	0.89	0.73	0.60	0.85
Control Delay		50.1	56.3	40.7	23.9	16.2
Queue Delay		0.0	69.4	0.0	0.9	0.5
Total Delay		50.1	125.7	40.7	24.8	16.6
Queue Length 50th（m）		22.8	60.1	24.4	163.8	232.1
Queue Length 95th（m）		39.1	\＃107．3	\＃46．3	186.7	m253．9
Internal Link Dist（m）		145.4			151.6	343.9
Turn Bay Length（m）				70.0		
Base Capacity（vph）		324	461	186	2447	2100
Starvation Cap Reductn		0	0	0	623	0
Spillback Cap Reductn		0	340	0	0	72
Storage Cap Reductn		0	0	0	0	0
Reduced v／c Ratio		0.33	3.15	0.72	0.81	0.88

Intersection Summary

Cycle Length： 140
Actuated Cycle Length： 140
Offset： 50.4 （36\％），Referenced to phase 2：SBTL and 6：NBTL，Start of Green
Natural Cycle： 90
Control Type：Actuated－Coordinated
\＃95th percentile volume exceeds capacity，queue may be longer．
Queue shown is maximum after two cycles．
m Volume for 95 th percentile queue is metered by upstream signal．
Splits and Phases：11：Cawthra Rd \＆Silver Creek Blvd

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	44	7	${ }^{7}$	靳	「	${ }^{1}$	44	「＇	${ }^{7}$	靳	「
Traffic Volume（vph）	146	592	306	259	327	67	139	1391	212	103	1392	52
Future Volume（vph）	146	592	306	259	327	67	139	1391	212	103	1392	52
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time（s）	4.0	6.9	6.9	3.0	6.9	6.9	4.0	7.0	7.0	4.0	7.0	7.0
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb，ped／bikes	1.00	1.00	0.98	1.00	1.00	0.96	1.00	1.00	1.00	1.00	1.00	0.98
Flpb，ped／bikes	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）	1682	3476	1488	1700	3476	1455	1700	3476	1521	1700	3476	1489
Flt Permitted	0.55	1.00	1.00	0.14	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（perm）	981	3476	1488	246	3476	1455	1700	3476	1521	1700	3476	1489
Peak－hour factor，PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj．Flow（vph）	146	592	306	259	327	67	139	1391	212	103	1392	52
RTOR Reduction（vph）	0	0	136	0	0	51	0	0	63	0	0	29
Lane Group Flow（vph）	146	592	170	259	327	16	139	1391	149	103	1392	23
Confl．Peds．（\＃／hr）	16		5			16	5					5
Turn Type	pm＋pt	NA	Perm	pm＋pt	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8		8	4		4			6			2
Actuated Green，G（s）	36.1	26.1	26.1	47.1	33.1	33.1	13.0	64.0	64.0	11.0	62.0	62.0
Effective Green，g（s）	36.1	26.1	26.1	47.1	33.1	33.1	13.0	64.0	64.0	11.0	62.0	62.0
Actuated g／C Ratio	0.26	0.19	0.19	0.34	0.24	0.24	0.09	0.46	0.46	0.08	0.44	0.44
Clearance Time（s）	4.0	6.9	6.9	3.0	6.9	6.9	4.0	7.0	7.0	4.0	7.0	7.0
Vehicle Extension（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap（vph）	303	648	277	269	821	344	157	1589	695	133	1539	659
v／s Ratio Prot	0.03	0.17		c0．12	0.09		c0．08	0.40		0.06	c0．40	
v／s Ratio Perm	0.09		0.11	c0．20		0.01			0.10			0.02
v／c Ratio	0.48	0.91	0.61	0.96	0.40	0.05	0.89	0.88	0.21	0.77	0.90	0.03
Uniform Delay，d1	42.2	55.8	52.3	39.6	45.1	41.3	62.8	34.4	22.9	63.3	36.2	22.1
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.72	1.18	1.67	0.69	1.53	1.00
Incremental Delay，d2	2.5	18.2	5.7	45.1	0.7	0.1	38.4	6.2	0.6	17.5	5.8	0.1
Delay（s）	44.7	74.0	58.1	84.7	45.7	41.4	83.3	46.9	38.7	61.4	61.1	22.1
Level of Service	D	E	E	F	D	D	F	D	D	E	E	C

Level of Service	D	E	E	F	D	D	F	D	D
Approach Delay（s）	65.3		60.7		E	C			
Approach LOS	E		E		D	59.8			

Intersection Summary			
HCM 2000 Control Delay	57.2	HCM 2000 Level of Service	E
HCM 2000 Volume to Capacity ratio	0.95		21.9
Actuated Cycle Length（s）	140.0	Sum of lost time（s）	F
Intersection Capacity Utilization	95.3%	ICU Level of Service	
Analysis Period（min）	15		

c Critical Lane Group

Queues
13：Cawthra Rd \＆Bloor St

	\rangle						4	\uparrow				\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个4	「	\％	个4	「	\％	个个	「	＊	个个	F
Traffic Volume（vph）	146	592	306	259	327	67	139	1391	212	103	1392	52
Future Volume（vph）	146	592	306	259	327	67	139	1391	212	103	1392	52
Lane Group Flow（vph）	146	592	306	259	327	67	139	1391	212	103	1392	52
Turn Type	pm＋pt	NA	Perm	pm＋pt	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8		8	4		4			6			2
Detector Phase	3	8	8	7	4	4	1	6	6	5	2	2
Switch Phase												
Minimum Initial（s）	5.0	8.0	8.0	5.0	8.0	8.0	2.0	8.0	8.0	5.0	8.0	8.0
Minimum Split（s）	9.0	27.9	27.9	8.0	27.9	27.9	8.0	29.0	29.0	9.0	29.0	29.0
Total Split（s）	14.0	33.0	33.0	21.0	40.0	40.0	17.0	71.0	71.0	15.0	69.0	69.0
Total Split（\％）	10．0\％	23．6\％	23．6\％	15．0\％	28．6\％	28．6\％	12．1\％	50．7\％	50．7\％	10．7\％	49．3\％	49．3\％
Yellow Time（s）	3.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
All－Red Time（s）	1.0	2.9	2.9	0.0	2.9	2.9	1.0	3.0	3.0	1.0	3.0	3.0
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	4.0	6.9	6.9	3.0	6.9	6.9	4.0	7.0	7.0	4.0	7.0	7.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？												
Recall Mode	None	C－Max	C－Max	None	C－Max	C－Max						
v／c Ratio	0.45	0.91	0.74	0.94	0.40	0.16	0.89	0.88	0.28	0.77	0.90	0.07
Control Delay	38.1	75.4	35.8	77.6	46.8	4.1	88.4	47.4	18.1	67.6	61.2	6.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	38.1	75.4	35.8	77.6	46.8	4.1	88.4	47.4	18.1	67.6	61.2	6.4
Queue Length 50th（m）	26.1	78.7	34.3	50.4	37.3	0.0	34.9	186.3	29.3	26.3	193.8	0.0
Queue Length 95th（m）	41.7	\＃109．1	66.7	\＃99．1	50.6	5.6	\＃70．2	209.6	47.3	m30．4	m192．8	m1．6
Internal Link Dist（m）		336.4			825.0			303.1			227.0	
Turn Bay Length（m）	120.0		70.0	50.0		70.0	50.0		20.0	90.0		110.0
Base Capacity（vph）	322	648	413	276	821	415	157	1589	758	133	1539	724
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.45	0.91	0.74	0.94	0.40	0.16	0.89	0.88	0.28	0.77	0.90	0.07
Intersection Summary												

Cycle Length： 140
Actuated Cycle Length： 140
Offset： 0 （0\％），Referenced to phase 2：SBT and 6：NBT，Start of Green
Natural Cycle： 90
Control Type：Actuated－Coordinated
\＃95th percentile volume exceeds capacity，queue may be longer．
Queue shown is maximum after two cycles．
m Volume for 95 th percentile queue is metered by upstream signal．
Splits and Phases：13：Cawthra Rd \＆Bloor St

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	44	「	＊	44	「	＊	中4	「	＊	中4	「
Traffic Volume（vph）	148	1304	229	185	652	61	209	1312	226	115	1157	63
Future Volume（vph）	148	1304	229	185	652	61	209	1312	226	115	1157	63
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time（s）	3.0	7.5	7.5	3.0	7.5	7.5	4.0	8.0	8.0	4.0	8.0	8.0
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb，ped／bikes	1.00	1.00	0.99	1.00	1.00	0.97	1.00	1.00	0.99	1.00	1.00	0.98
Flpb，ped／bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）	1698	3476	1501	1700	3476	1483	1700	3476	1501	1700	3476	1495
Flt Permitted	0.29	1.00	1.00	0.08	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（perm）	513	3476	1501	148	3476	1483	1700	3476	1501	1700	3476	1495
Peak－hour factor，PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj．Flow（vph）	148	1304	229	185	652	61	209	1312	226	115	1157	63
RTOR Reduction（vph）	0	0	131	0	0	40	0	0	92	0	0	43
Lane Group Flow（vph）	148	1304	98	185	652	21	209	1312	134	115	1157	20
Confl．Peds．（\＃／hr）	14		1	1		14	11		1	1		5
Turn Type	pm＋pt	NA	Perm	pm＋pt	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8		8	4		4			6			2
Actuated Green，G（s）	56.5	48.5	48.5	56.5	48.5	48.5	16.0	52.0	52.0	9.0	45.0	45.0
Effective Green，g（s）	56.5	48.5	48.5	56.5	48.5	48.5	16.0	52.0	52.0	9.0	45.0	45.0
Actuated g／C Ratio	0.40	0.35	0.35	0.40	0.35	0.35	0.11	0.37	0.37	0.06	0.32	0.32
Clearance Time（s）	3.0	7.5	7.5	3.0	7.5	7.5	4.0	8.0	8.0	4.0	8.0	8.0
Vehicle Extension（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap（vph）	274	1204	519	148	1204	513	194	1291	557	109	1117	480
v／s Ratio Prot	0.03	0.38		c0．07	0.19		c0．12	c0．38		0.07	0.33	
v／s Ratio Perm	0.19		0.07	c0．43		0.01			0.09			0.01
v／c Ratio	0.54	1.08	0.19	1.25	0.54	0.04	1.08	1.02	0.24	1.06	1.04	0.04
Uniform Delay，d1	28.2	45.8	32.0	35.1	36.8	30.3	62.0	44.0	30.4	65.5	47.5	32.7
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.67	1.16	1.76	1.04	1.08	1.00
Incremental Delay，d2	3.8	51.5	0.4	156.3	0.9	0.1	78.3	25.9	0.8	86.4	32.0	0.1
Delay（s）	32.0	97.3	32.4	191.4	37.7	30.4	119.6	77.0	54.2	154.9	83.4	32.8
Level of Service	C	F	C	F	D	C	F	E	D	F	F	C

Approach Delay（s）	82.7	68.8	79.2	87.2
Approach LOS	F	E	E	F

Intersection Summary			
HCM 2000 Control Delay	80.5	HCM 2000 Level of Service	F
HCM 2000 Volume to Capacity ratio	1.16		22.5
Actuated Cycle Length（s）	140.0	Sum of lost time（s）	H
Intersection Capacity Utilization	110.0%	ICU Level of Service	
Analysis Period（min）	15		

c Critical Lane Group

Queues
19：Cawthra Rd \＆Burnhamthorpe Rd

							4	\dagger			\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个4	「	\％	性	「	\％	个个	「	＊	个4	「
Traffic Volume（vph）	148	1304	229	185	652	61	209	1312	226	115	1157	63
Future Volume（vph）	148	1304	229	185	652	61	209	1312	226	115	1157	63
Lane Group Flow（vph）	148	1304	229	185	652	61	209	1312	226	115	1157	63
Turn Type	pm＋pt	NA	Perm	pm＋pt	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8		8	4		4			6			2
Detector Phase	3	8	8	7	4	4	1	6	6	5	2	2
Switch Phase												
Minimum Initial（s）	5.0	8.0	8.0	5.0	8.0	8.0	5.0	8.0	8.0	5.0	8.0	8.0
Minimum Split（s）	8.0	51.5	51.5	9.0	51.5	51.5	10.0	47.0	47.0	10.0	47.0	47.0
Total Split（s）	11.0	56.0	56.0	11.0	56.0	56.0	20.0	60.0	60.0	13.0	53.0	53.0
Total Split（\％）	7．9\％	40．0\％	40．0\％	7．9\％	40．0\％	40．0\％	14．3\％	42．9\％	42．9\％	9．3\％	37．9\％	37．9\％
Yellow Time（s）	3.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
All－Red Time（s）	0.0	3.5	3.5	0.0	3.5	3.5	1.0	4.0	4.0	1.0	4.0	4.0
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	3.0	7.5	7.5	3.0	7.5	7.5	4.0	8.0	8.0	4.0	8.0	8.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？												
Recall Mode	None	C－Max	C－Max	None	C－Max	C－Max						
v／c Ratio	0.51	1.08	0.35	1.22	0.54	0.10	1.08	1.02	0.35	1.06	1.04	0.11
Control Delay	30.0	94.6	7.8	171.2	38.9	0.3	119.2	75.7	20.8	149.3	81.5	5.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	30.0	94.6	7.8	171.2	38.9	0.3	119.2	75.7	20.8	149.3	81.5	5.9
Queue Length 50th（m）	22.1	～195．4	4.8	~ 42.6	70.2	0.0	~ 0.1	～189．4	32.7	－32．3	~ 117.5	1.3
Queue Length 95th（m）	35.1	\＃234．7	22.2	\＃87．1	87.8	0.0	m\＃83．8	\＃229．5	m43．6	m\＃56．8	\＃200．5	m3．5
Internal Link Dist（m）		927.6			832.4			76.3			156.2	
Turn Bay Length（ m ）	70.0		100.0	80.0		60.0	100.3			130.0		160.0
Base Capacity（vph）	290	1204	651	152	1204	595	194	1291	649	109	1117	562
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.51	1.08	0.35	1.22	0.54	0.10	1.08	1.02	0.35	1.06	1.04	0.11

Intersection Summary

Cycle Length： 140
Actuated Cycle Length： 140
Offset： 0 （0\％），Referenced to phase 2：SBT and 6：NBT，Start of Green
Natural Cycle： 140
Control Type：Actuated－Coordinated
～Volume exceeds capacity，queue is theoretically infinite．
Queue shown is maximum after two cycles．
\＃95th percentile volume exceeds capacity，queue may be longer．
Queue shown is maximum after two cycles．
m Volume for 95 th percentile queue is metered by upstream signal．
Splits and Phases：19：Cawthra Rd \＆Burnhamthorpe Rd

	\rangle		7		4	\dagger	\pm	\downarrow	4
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	中 ${ }^{\text {a }}$	${ }^{7}$	中 ${ }^{\text {a }}$	${ }^{1}$	中 ${ }^{\text {a }}$	1	44	「゙
Traffic Volume（vph）	71	700	89	473	134	1187	103	1107	27
Future Volume（vph）	71	700	89	473	134	1187	103	1107	27
Lane Group Flow（vph）	71	848	89	600	134	1384	103	1107	27
Turn Type	pm＋pt	NA	pm＋pt	NA	pm＋pt	NA	pm＋pt	NA	Perm
Protected Phases	3	8	7	4	1	6	5	2	
Permitted Phases	8		4		6		2		2
Detector Phase	3	8	7	4	1	6	5	2	2
Switch Phase									
Minimum Initial（s）	5.0	8.0	5.0	8.0	5.0	8.0	5.0	8.0	8.0
Minimum Split（s）	8.0	43.4	8.0	43.4	8.0	40.5	8.0	40.5	40.5
Total Split（s）	10.0	46.0	10.0	46.0	15.0	69.0	15.0	69.0	69.0
Total Split（\％）	7．1\％	32．9\％	7．1\％	32．9\％	10．7\％	49．3\％	10．7\％	49．3\％	49．3\％
Yellow Time（s）	3.0	4.0	3.0	4.0	3.0	4.0	3.0	4.0	4.0
All－Red Time（s）	0.0	2.4	0.0	2.4	0.0	2.5	0.0	2.5	2.5
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	3.0	6.4	3.0	6.4	3.0	6.5	3.0	6.5	6.5
Lead／Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lag
Lead－Lag Optimize？									
Recall Mode	None	None	None	None	None	Min	None	C－Min	C－Min
v／c Ratio	0.29	0.89	0.60	0.60	0.54	0.89	0.55	0.71	0.04
Control Delay	31.6	59.4	46.8	43.7	33.3	18.8	47.1	56.2	6.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	31.6	59.4	46.8	43.7	33.3	18.8	47.1	56.2	6.9
Queue Length 50th（m）	11.7	107.0	14.8	67.6	13.6	47.3	20.2	135.6	0.2
Queue Length 95th（m）	21.6	\＃137．1	\＃26．6	86.2	m17．4	m56．1	35.6	159.3	m4．4
Internal Link Dist（m）		745.4		810.9		174.4		393.3	
Turn Bay Length（m）	40.0		60.0		80.0		40.0		30.0
Base Capacity（vph）	244	966	148	1008	257	1550	200	1565	664
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.29	0.88	0.60	0.60	0.52	0.89	0.52	0.71	0.04
Intersection Summary									

Cycle Length： 140
Actuated Cycle Length： 140
Offset： 0 （0\％），Referenced to phase 2：SBTL，Start of Green
Natural Cycle： 110
Control Type：Actuated－Coordinated
\＃95th percentile volume exceeds capacity，queue may be longer．
Queue shown is maximum after two cycles．
m Volume for 95 th percentile queue is metered by upstream signal．
Splits and Phases：20：Cawthra Rd \＆Rathburn Rd

c Critical Lane Group

	4		4	\dagger	\downarrow
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Configurations	${ }^{17}$	「	\%	¢ \uparrow	性
Traffic Volume (vph)	123	25	3	1317	1159
Future Volume (vph)	123	25	3	1317	1159
Lane Group Flow (vph)	123	25	3	1317	1159
Turn Type	Prot	Perm	pm+pt	NA	NA
Protected Phases	4		1	6	2
Permitted Phases		4	6		
Detector Phase	4	4	1	6	2
Switch Phase					
Minimum Initial (s)	5.0	5.0	5.0	8.0	8.0
Minimum Split (s)	28.2	28.2	8.0	27.0	23.0
Total Split (s)	38.0	38.0	9.0	102.0	93.0
Total Split (\%)	27.1\%	27.1\%	6.4\%	72.9\%	66.4\%
Yellow Time (s)	4.0	4.0	3.0	4.0	4.0
All-Red Time (s)	2.2	2.2	0.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2	3.0	6.0	6.0
Lead/Lag			Lead		Lag
Lead-Lag Optimize?					
Recall Mode	None	None	None	None	C-Max
v/c Ratio	0.59	0.12	0.01	0.48	0.43
Control Delay	68.6	29.4	2.0	3.9	3.3
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	68.6	29.4	2.0	3.9	3.3
Queue Length 50th (m)	30.1	2.1	0.1	29.5	11.6
Queue Length 95th (m)	47.2	9.8	m0.1	35.3	34.4
Internal Link Dist (m)	191.7			393.3	365.1
Turn Bay Length (m)		10.0	30.0		
Base Capacity (vph)	386	357	378	2743	2690
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.32	0.07	0.01	0.48	0.43
Intersection Summary					

Cycle Length: 140
Actuated Cycle Length: 140
Offset: 0 (0\%), Referenced to phase 2:SBT, Start of Green
Natural Cycle: 65
Control Type: Actuated-Coordinated
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 21: Cawthra Rd \& Meadows Blvd

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	＊	中4	「	${ }^{1}$	中4	「＇	${ }^{7}$	中4	「	${ }^{7}$	中4	「
Traffic Volume（vph）	427	1652	386	63	591	272	224	1151	139	209	746	145
Future Volume（vph）	427	1652	386	63	591	272	224	1151	139	209	746	145
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time（s）	3.0	7.9	7.9	4.0	7.9	7.9	4.0	8.4	8.4	4.0	8.4	8.4
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb，ped／bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Flpb，ped／bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）	1700	3476	1521	1580	3476	1521	1700	3476	1521	1700	3476	1268
Flt Permitted	0.24	1.00	1.00	0.11	1.00	1.00	0.95	1.00	1.00	0.11	1.00	1.00
Satd．Flow（perm）	431	3476	1521	187	3476	1521	1700	3476	1521	206	3476	1268
Peak－hour factor，PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj．Flow（vph）	427	1652	386	63	591	272	224	1151	139	209	746	145
RTOR Reduction（vph）	0	0	168	0	0	131	0	0	85	0	0	109
Lane Group Flow（vph）	427	1652	218	63	591	142	224	1151	54	209	746	36

Confl．Peds．（\＃／hr）

Heavy Vehicles（\％）	5%	5%	5%	13%	5%	5%	5%	5%	5%	5%	5%	26%
Turn Type	pm +pt	NA	Perm	pm +pt	NA	Perm	Prot	NA	Perm	pm +pt	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	

Permitted Phases	8		8	4		4			6	2		2
Actuated Green，G（s）	67.9	60.7	60.7	38.8	35.6	35.6	17.0	43.8	43.8	42.8	34.8	34.8
Effective Green，g（s）	67.9	60.7	60.7	38.8	35.6	35.6	17.0	43.8	43.8	42.8	34.8	34.8
Actuated g／C Ratio	0.49	0.43	0.43	0.28	0.25	0.25	0.12	0.31	0.31	0.31	0.25	0.25
Clearance Time（s）	3.0	7.9	7.9	4.0	7.9	7.9	4.0	8.4	8.4	4.0	8.4	8.4
Vehicle Extension（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap（vph）	474	1507	659	83	883	386	206	1087	475	148	864	315
v／s Ratio Prot	c0．19	c0．48		0.02	0.17		c0．13	0.33		c0．08	0.21	
v／s Ratio Perm	0.25		0.14	0.19		0.09			0.04	c0．35		0.03
v／c Ratio	0.90	1.10	0.33	0.76	0.67	0.37	1.09	1.06	0.11	1.41	0.86	0.11
Uniform Delay，d1	27.1	39.6	26.2	47.5	46.9	42.9	61.5	48.1	34.3	43.8	50.3	40.7
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.86	1.05	2.11	1.00	1.00	1.00
Incremental Delay，d2	21.1	54.2	0.6	37.1	2.6	1.2	85.1	43.2	0.4	220.5	11.1	0.7
Delay（s）	48.2	93.8	26.8	84.6	49.5	44.2	137.8	93.5	72.7	264.4	61.5	41.4
Level of Service	D	F	C	F	D	D	F	F	E	F	E	D
Approach Delay（s）		75.4			50.3			98.2			97.4	
Approach LOS		E			D			F			F	

Intersection Summary		F	
HCM 2000 Control Delay	81.3	HCM 2000 Level of Service	
HCM 2000 Volume to Capacity ratio	1.20		24.3
Actuated Cycle Length（s）	140.0	Sum of lost time（s）	H
Intersection Capacity Utilization	112.8%	ICU Level of Service	
Analysis Period（min）	15		
C Critical Lane Group			

Cycle Length: 140
Actuated Cycle Length: 140
Offset: 0 (0\%), Referenced to phase 2:SBTL and 6:NBT, Start of Green
Natural Cycle: 140
Control Type: Actuated-Coordinated
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 22: Cawthra Rd \& Eastgate Pkwy

2031 PM PEAK HOUR

APPENDIX D3 - Future (2031 PM Peak) Mitigated Condition - Recommended Improvements

Cawthra Rd Intersection	Intersection			Critical Movements				
	LOS	Delay (s)	V/C	Mvmt	LOS	Delay (s)	VIC Ratio	$95^{\text {th }}$ Queue
Eastgate Pkwy	E	82.6	1.17	NBL	F	241	1.29	\#99
				EBL	F	250	1.32	\#64
				WBT	F	119	1.13	\#221
				SBT	F	96	1.10	\#281
Meadows Blvd	A	9.6	0.71	--	--	--	--	--
Rathburn Rd	E	58.6	1.11	NBL	F	177	1.14	m\#107
				SBT	E	64	1.00	\#249
				WBT	F	87	1.04	\#200
Burnhamthorpe Rd	F	122.8	1.29	NBL	F	341	1.64	m\#137
				WBL	F	113	1.06	\#86
				WBT	F	149	1.21	\#280
				SBT	F	167	1.24	\#239
Bloor St	E	63.4	1.09	NBL	F	118	1.04	\#94
				WBL	F	93	1.04	\#149
				WBT	E	64	0.95	\#175
				NBT	E	59	0.98	\#243
				SBT	E	58	0.91	m157
Silver Creek Blvd	C	28.3	0.85	--	--	--	--	--
Ramp to Dundas	C	32.9	0.79	--	--	--	--	--
Queensway	F	89	1.09	NBL	F	216	1.27	\#70
				SBL	F	116	1.04	m\#52
				WBT	F	98	1.10	\#237
				NBT	E	75	1.01	\#205
				SBT	F	104	1.05	\#198
Tedwyn Dr	A	9.4	0.65	--	--	--	--	--
North Service Rd	F	133.3	1.44	NBL	F	200	1.27	\#70
				SBL	F	160	1.02	\#39
				WBL	F	253	1.46	\#255
				WBT	E	74	1.04	\#260
				NBT	D	41	0.91	\#182
				SBT	F	188	1.33	\#283
South Service Road	D	38.7	1.04	SBL	F	98	1.02	\#95
				EBL	F	123	1.00	\#61

\# reflects queue length after two cycles

	\rangle	\rightarrow	7		4	\uparrow		\downarrow	\downarrow
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Configurations	\%	$\hat{1}$	${ }^{7}$	1	\%	个t	${ }^{*}$	个4	F
Traffic Volume (vph)	121	142	50	127	51	1246	266	1783	383
Future Volume (vph)	121	142	50	127	51	1246	266	1783	383
Lane Group Flow (vph)	121	200	50	450	51	1290	266	1783	383
Turn Type	Perm	NA	Perm	NA	Perm	NA	$\mathrm{pm}+\mathrm{pt}$	NA	Perm
Protected Phases		8		4		6	5	2	
Permitted Phases	8		4		6		2		2
Detector Phase	8	8	4	4	6	6	5	2	2
Switch Phase									
Minimum Initial (s)	8.0	8.0	8.0	8.0	15.0	15.0	5.0	15.0	15.0
Minimum Split (s)	40.3	40.3	40.3	40.3	33.7	33.7	8.0	33.7	33.7
Total Split (s)	45.0	45.0	45.0	45.0	58.0	58.0	17.0	75.0	75.0
Total Split (\%)	37.5\%	37.5\%	37.5\%	37.5\%	48.3\%	48.3\%	14.2\%	62.5\%	62.5\%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	3.0	4.0	4.0
All-Red Time (s)	3.3	3.3	3.3	3.3	2.7	2.7	0.0	2.7	2.7
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	7.3	7.3	7.3	7.3	6.7	6.7	3.0	6.7	6.7
Lead/Lag					Lag	Lag	Lead		
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	None	Max	Max
v/c Ratio	1.01	0.37	0.16	0.78	0.85	0.86	1.00	0.89	0.41
Control Delay	126.1	31.8	31.4	38.7	117.3	37.6	88.6	29.1	9.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24.4	0.0
Total Delay	126.1	31.8	31.4	38.7	117.3	37.6	88.6	53.5	9.7
Queue Length 50th (m)	25.8	30.8	7.8	67.7	9.8	131.6	~ 44.8	171.2	25.3
Queue Length 95th (m)	\#61.2	49.5	17.0	105.1	\#33.4	160.3	\#94.7	207.3	44.2
Internal Link Dist (m)		235.7		233.3		84.9		74.1	
Turn Bay Length (m)	83.8		81.8		77.6		75.6		30.0
Base Capacity (vph)	126	567	330	595	60	1501	266	2005	941
Starvation Cap Reductn	0	0	0	0	0	0	0	301	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.96	0.35	0.15	0.76	0.85	0.86	1.00	1.05	0.41
Intersection Summary									

Cycle Length: 120
Actuated Cycle Length: 118.5
Natural Cycle: 95
Control Type: Actuated-Uncoordinated
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 48: Cawthra Rd \& South Service Rd

C Critical Lane Group

Queues
1: Cawthra Rd \& QEW EB Off-ramp

Cycle Length: 120
Actuated Cycle Length: 119.1
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: Cawthra Rd \& QEW EB Off-ramp

[^5]Queues
2: Cawthra Rd \& QEW WB Off-ramp

Cycle Length: 120
Actuated Cycle Length: 114.2
Natural Cycle: 60
Control Type: Actuated-Uncoordinated

Splits and Phases: 2: Cawthra Rd \& QEW WB Off-ramp

	4	\rightarrow	7	4	4	\dagger	p		1
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT
Lane Configurations	${ }^{7}$	个	${ }^{7}$	个	${ }^{7}$	44	「	${ }^{7}$	虾
Traffic Volume（vph）	48	92	659	603	165	1397	179	60	2386
Future Volume（vph）	48	92	659	603	165	1397	179	60	2386
Lane Group Flow（vph）	48	266	659	826	165	1397	179	60	2477
Turn Type	Perm	NA	pm＋pt	NA	pm＋pt	NA	Perm	Perm	NA
Protected Phases		8	7	4	1	6			2
Permitted Phases	8		4		6		6	2	
Detector Phase	8	8	7	4	1	6	6	2	2
Switch Phase									
Minimum Initial（s）	8.0	8.0	5.0	8.0	5.0	8.0	8.0	8.0	8.0
Minimum Split（s）	45.6	45.6	8.0	41.6	8.0	34.3	34.3	34.3	34.3
Total Split（s）	45.6	45.6	15.0	60.6	8.0	59.4	59.4	51.4	51.4
Total Split（\％）	38．0\％	38．0\％	12．5\％	50．5\％	6．7\％	49．5\％	49．5\％	42．8\％	42．8\％
Yellow Time（s）	4.0	4.0	3.0	4.0	3.0	4.0	4.0	4.0	4.0
All－Red Time（s）	2.6	2.6	0.0	2.6	0.0	2.3	2.3	2.3	2.3
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	6.6	6.6	3.0	6.6	3.0	6.3	6.3	6.3	6.3
Lead／Lag	Lag	Lag	Lead		Lead			Lag	Lag
Lead－Lag Optimize？									
Recall Mode	None	None	None	None	None	Max	Max	Max	Max
v／c Ratio	0.81	0.45	1.39	1.04	1.23	0.91	0.24	1.02	1.33
Control Delay	114.3	24.2	214.3	73.8	177.0	41.1	7.8	163.4	182.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	43.9	0.0	0.0	0.0
Total Delay	114.3	24.2	214.3	73.8	177.0	85.0	7.8	163.4	182.6
Queue Length 50th（m）	9.5	30.5	~ 184.1	~ 190.9	～29．4	145.6	6.6	～13．0	~ 256.4
Queue Length 95th（m）	\＃31．2	53.0	\＃254．5	\＃260．2	\＃69．8	\＃181．6	19.1	\＃39．3	\＃282．6
Internal Link Dist（m）		129.5		149.8		53.3			269.7
Turn Bay Length（m）	80.0		90.0		60.0		60.0	180.0	
Base Capacity（vph）	59	592	474	798	134	1538	742	59	1869
Starvation Cap Reductn	0	0	0	0	0	262	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.81	0.45	1.39	1.04	1.23	1.09	0.24	1.02	1.33
Intersection Summary									

Cycle Length： 120
Actuated Cycle Length： 120
Natural Cycle： 140
Control Type：Actuated－Uncoordinated
～Volume exceeds capacity，queue is theoretically infinite．
Queue shown is maximum after two cycles．
\＃95th percentile volume exceeds capacity，queue may be longer．
Queue shown is maximum after two cycles．
Splits and Phases：3：Cawthra Rd \＆North Service Rd

c Critical Lane Group

Queues
4: Cawthra Rd \& Tedwyn Dr

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 7.2 (6\%), Referenced to phase 2:SBT and 6:NBTL, Start of Green
Natural Cycle: 100
Control Type: Actuated-Coordinated
Splits and Phases: 4: Cawthra Rd \& Tedwyn Dr

C Critical Lane Group

Queues
6：Cawthra Rd \＆Queensway

	4	\rightarrow	4	\checkmark	4	\dagger		，	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT
Lane Configurations	${ }^{7} 1$	虾	${ }^{7} 1$	性\％	41	44	「	${ }^{7} 1$	种\％
Traffic Volume（vph）	165	588	646	1768	299	1181	168	220	1543
Future Volume（vph）	165	588	646	1768	299	1181	168	220	1543
Lane Group Flow（vph）	165	810	646	1996	299	1181	168	220	1647
Turn Type	Prot	NA	Prot	NA	Prot	NA	Perm	Prot	NA
Protected Phases	3	8	7	4	1	6		5	2
Permitted Phases							6		
Detector Phase	3	8	7	4	1	6	6	5	2
Switch Phase									
Minimum Initial（s）	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
Minimum Split（s）	13.0	34.9	13.0	34.9	13.0	34.5	34.5	13.0	34.5
Total Split（s）	13.0	36.4	35.0	58.4	17.0	54.6	54.6	14.0	51.6
Total Split（\％）	9．3\％	26．0\％	25．0\％	41．7\％	12．1\％	39．0\％	39．0\％	10．0\％	36．9\％
Yellow Time（s）	3.0	4.0	3.0	4.0	3.0	4.0	4.0	3.0	4.0
All－Red Time（s）	2.0	2.9	2.0	2.9	2.0	3.5	3.5	2.0	3.5
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	5.0	6.9	5.0	6.9	5.0	7.5	7.5	5.0	7.5
Lead／Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lag	Lead	Lag
Lead－Lag Optimize？									
Recall Mode	None	None	None	None	None	C－Max	C－Max	None	C－Max
v／c Ratio	0.88	0.76	0.92	1.10	1.06	1.01	0.28	1.04	1.05
Control Delay	104.8	53.3	72.7	94.6	129.9	74.7	8.2	115.5	98.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	104.8	53.3	72.7	94.6	129.9	74.7	8.2	115.5	98.5
Queue Length 50th（m）	21.9	66.7	83.7	~ 210.0	~ 42.9	～161．5	3.6	～31．7	~ 170.6
Queue Length 95th（m）	\＃41．1	81.1	\＃114．1	\＃236．8	\＃70．2	\＃205．0	18.4	m\＃52．4	\＃197．9
Internal Link Dist（m）		1035.8		119.2		142.3			124.6
Turn Bay Length（m）	160.0		100.0		80.0		70.0	80.0	
Base Capacity（vph）	188	1061	706	1817	282	1169	609	212	1564
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.88	0.76	0.92	1.10	1.06	1.01	0.28	1.04	1.05

Intersection Summary

Cycle Length： 140
Actuated Cycle Length： 140
Offset： 63 （45\％），Referenced to phase 2：SBT and 6：NBT，Start of Green
Natural Cycle： 140
Control Type：Actuated－Coordinated
～Volume exceeds capacity，queue is theoretically infinite．
Queue shown is maximum after two cycles．
\＃95th percentile volume exceeds capacity，queue may be longer．
Queue shown is maximum after two cycles．
m Volume for 95 th percentile queue is metered by upstream signal．
Splits and Phases：6：Cawthra Rd \＆Queensway

| | | | | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

c Critical Lane Group

Cycle Length: 140
Actuated Cycle Length: 140
Offset: 46.2 (33\%), Referenced to phase 2:SBTL and 6:NBT, Start of Green
Natural Cycle: 105
Control Type: Actuated-Coordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 10: Cawthra Rd \& Dundas St Ramp

C Critical Lane Group

Cycle Length: 140
Actuated Cycle Length: 140
Offset: 1.4 (1\%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green
Natural Cycle: 120
Control Type: Actuated-Coordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 11: Cawthra Rd \& Silver Creek Blvd

c Critical Lane Group

	4						4		7			\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	＊	个4	「	\％	个4	「	\％	个4	「	\％	个个	F
Traffic Volume（vph）	74	425	257	432	1038	143	217	1431	172	104	1289	110
Future Volume（vph）	74	425	257	432	1038	143	217	1431	172	104	1289	110
Lane Group Flow（vph）	74	425	257	432	1038	143	217	1431	172	104	1289	110
Turn Type	pm＋pt	NA	Perm									
Protected Phases	3	8		7	4		1	，		5	2	
Permitted Phases	8		8	4		4	6		6	2		2
Detector Phase	3	8	8	7	4	4	1	6	6	5	2	2
Switch Phase												
Minimum Initial（s）	5.0	8.0	8.0	5.0	8.0	8.0	5.0	8.0	8.0	5.0	8.0	8.0
Minimum Split（s）	9.0	27.9	27.9	8.0	27.9	27.9	8.0	29.0	29.0	8.0	29.0	29.0
Total Split（s）	9.0	30.0	30.0	30.0	51.0	51.0	16.0	64.0	64.0	16.0	64.0	64.0
Total Split（\％）	6．4\％	21．4\％	21．4\％	21．4\％	36．4\％	36．4\％	11．4\％	45．7\％	45．7\％	11．4\％	45．7\％	45．7\％
Yellow Time（s）	3.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
All－Red Time（s）	1.0	2.9	2.9	0.0	2.9	2.9	0.0	3.0	3.0	0.0	3.0	3.0
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	4.0	6.9	6.9	3.0	6.9	6.9	3.0	7.0	7.0	3.0	7.0	7.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？												
Recall Mode	None	C－Max	C－Max	None	C－Max	C－Max						
v／c Ratio	0.63	0.74	0.63	1.01	0.95	0.27	1.02	0.98	0.25	0.54	0.91	0.16
Control Delay	55.2	64.4	23.2	81.1	64.2	11.9	103.4	58.7	12.5	24.6	57.6	19.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	55.2	64.4	23.2	81.1	64.2	11.9	103.4	58.7	12.5	24.6	57.6	19.6
Queue Length 50th（m）	11.7	54.9	15.4	~ 88.5	136.2	6.3	~ 45.8	169.6	11.5	22.7	180.8	12.9
Queue Length 95th（m）	\＃22．5	72.1	43.1	\＃149．3	\＃175．0	21.3	\＃93．7	\＃243．4	24.0	m21．2	m157．0	m11．3
Internal Link Dist（ m ）		336.4			825.0			303.1			227.0	
Turn Bay Length（ m ）	120.0		70.0	50.0		70.0	50.0		20.0	90.0		110.0
Base Capacity（vph）	118	573	405	427	1094	537	212	1455	699	212	1415	674
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0		0	0	0	0
Reduced v／c Ratio	0.63	0.74	0.63	1.01	0.95	0.27	1.02	0.98	0.25	0.49	0.91	0.16
Intersection Summary												

Cycle Length： 140
Actuated Cycle Length： 140
Offset： 0 （0\％），Referenced to phase 2：SBTL and 6：NBTL，Start of Green
Natural Cycle： 110
Control Type：Actuated－Coordinated
～Volume exceeds capacity，queue is theoretically infinite．
Queue shown is maximum after two cycles．
\＃95th percentile volume exceeds capacity，queue may be longer．
Queue shown is maximum after two cycles．
m Volume for 95 th percentile queue is metered by upstream signal．
Splits and Phases：13：Cawthra Rd \＆Bloor St

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	44	「	${ }^{7}$	中4	「	${ }^{7}$	中4	「	${ }^{7}$	44	F
Traffic Volume（vph）	70	790	131	243	1416	82	318	1011	100	112	1438	63
Future Volume（vph）	70	790	131	243	1416	82	318	1011	100	112	1438	63
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time（s）	3.0	7.5	7.5	3.0	7.5	7.5	4.0	7.5	7.5	4.0	7.5	7.5
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb，ped／bikes	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	0.98	1.00	1.00	0.98
Flpb，ped／bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）	1700	3476	1521	1700	3476	1471	1700	3476	1485	1700	3476	1485
Flt Permitted	0.09	1.00	1.00	0.18	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（perm）	159	3476	1521	322	3476	1471	1700	3476	1485	1700	3476	1485
Peak－hour factor，PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj．Flow（vph）	70	790	131	243	1416	82	318	1011	100	112	1438	63
RTOR Reduction（vph）	0	0	89	0	0	54	0	0	57	0	0	42
Lane Group Flow（vph）	70	790	42	243	1416	28	318	1011	43	112	1438	21
Confl．Peds．（\＃／hr）	22					22	11		11	11		11
Turn Type	pm＋pt	NA	Perm	pm＋pt	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8		8	4		4			6			2
Actuated Green，G（s）	53.0	45.1	45.1	57.2	47.2	47.2	16.0	51.0	51.0	11.9	46.9	46.9
Effective Green，g（s）	53.0	45.1	45.1	57.2	47.2	47.2	16.0	51.0	51.0	11.9	46.9	46.9
Actuated g／C Ratio	0.38	0.32	0.32	0.41	0.34	0.34	0.11	0.36	0.36	0.09	0.33	0.33
Clearance Time（s）	3.0	7.5	7.5	3.0	7.5	7.5	4.0	7.5	7.5	4.0	7.5	7.5
Vehicle Extension（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap（vph）	147	1119	489	229	1171	495	194	1266	540	144	1164	497
v／s Ratio Prot	0.03	0.23		c0．08	c0．41		c0．19	0.29		0.07	c0．41	
v／s Ratio Perm	0.15		0.03	0.36		0.02			0.03			0.01
v／c Ratio	0.48	0.71	0.09	1.06	1.21	0.06	1.64	0.80	0.08	0.78	1.24	0.04
Uniform Delay，d1	34.5	41.6	33.1	36.6	46.4	31.3	62.0	39.9	29.1	62.8	46.5	31.4
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.63	1.23	2.35	1.00	1.25	5.06
Incremental Delay，d2	5.0	2.6	0.2	76.5	102.3	0.1	302.0	3.4	0.2	10.6	108.8	0.1
Delay（s）	39.5	44.2	33.2	113.2	148.7	31.4	341.0	52.5	68.6	73.4	166.8	159.1
Level of Service	D	D	C	F	F	C	F	D	E	E	F	F

Intersection Summary			
HCM 2000 Control Delay	122.8	HCM 2000 Level of Service	F
HCM 2000 Volume to Capacity ratio	1.29		22.0
Actuated Cycle Length（s）	140.0	Sum of lost time（s）	H
Intersection Capacity Utilization	119.8%	ICU Level of Service	
Analysis Period（min）	15		

c Critical Lane Group

Queues
19：Cawthra Rd \＆Burnhamthorpe Rd

	\rangle			7			4					\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	性	「	${ }^{7}$	个4	7	\％		「	\％	乐	F
Traffic Volume（vph）	70	790	131	243	1416	82	318	1011	100	112	1438	63
Future Volume（vph）	70	790	131	243	1416	82	318	1011	100	112	1438	63
Lane Group Flow（vph）	70	790	131	243	1416	82	318	1011	100	112	1438	63
Turn Type	pm＋pt	NA	Perm	pm＋pt	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8		8	4		4			6			2
Detector Phase	3	8	8	7	4	4	1	6	6	5	2	2
Switch Phase												
Minimum Initial（ s ）	5.0	8.0	8.0	5.0	8.0	8.0	5.0	8.0	8.0	5.0	8.0	8.0
Minimum Split（s）	9.0	51.5	51.5	8.0	51.5	51.5	9.0	47.0	47.0	9.0	47.0	47.0
Total Split（s）	13.0	52.0	52.0	13.0	52.0	52.0	20.0	59.0	59.0	16.0	55.0	55.0
Total Split（\％）	9．3\％	37．1\％	37．1\％	9．3\％	37．1\％	37．1\％	14．3\％	42．1\％	42．1\％	11．4\％	39．3\％	39．3\％
Yellow Time（s）	3.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
All－Red Time（s）	0.0	3.5	3.5	0.0	3.5	3.5	1.0	3.5	3.5	1.0	3.5	3.5
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	3.0	7.5	7.5	3.0	7.5	7.5	4.0	7.5	7.5	4.0	7.5	7.5
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？												
Recall Mode	None	C－Max	C－Max	None	C－Max	C－Max						
v／c Ratio	0.41	0.72	0.23	1.03	1.21	0.15	1.64	0.79	0.17	0.78	1.22	0.11
Control Delay	30.0	46.5	6.3	98.1	142.7	6.0	330.7	52.2	17.1	76.3	149.4	12.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	30.0	46.5	6.3	98.1	142.7	6.0	330.7	52.2	17.1	76.3	149.4	12.6
Queue Length 50th（m）	10.2	93.6	0.0	~ 42.3	－240．4	0.0	~ 119.8	138.7	11.9	30.2	～231．6	2.5
Queue Length 95th（m）	19.1	115.0	13.2	\＃86．0	\＃279．7	9.4 m	m\＃136．5	m146．0	m16．1	m32．4m	\＃\＃38．7	m3．5
Internal Link Dist（ m ）		927.6			832.4			81.9			166.4	
Turn Bay Length（ m ）	70.0		100.0	80.0		60.0	130.0			130.0		160.0
Base Capacity（vph）	177	1104	572	235	1170	554	194	1280	604	145	1179	563
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.40	0.72	0.23	1.03	1.21	0.15	1.64	0.79	0.17	0.77	1.22	0.11
Intersection Summary												

Cycle Length： 140
Actuated Cycle Length： 140
Offset： 0 （0\％），Referenced to phase 2：SBT and 6：NBT，Start of Green
Natural Cycle： 140
Control Type：Actuated－Coordinated
～Volume exceeds capacity，queue is theoretically infinite．
Queue shown is maximum after two cycles．
\＃95th percentile volume exceeds capacity，queue may be longer．
Queue shown is maximum after two cycles．
m Volume for 95 th percentile queue is metered by upstream signal．
Splits and Phases：19：Cawthra Rd \＆Burnhamthorpe Rd

	4	\rightarrow	4	\leftarrow	4	4	\pm	\dagger	\downarrow
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	中 ${ }^{\text {a }}$	${ }^{*}$	中 ${ }^{\text {a }}$	${ }^{7}$	中 ${ }^{\text {a }}$	${ }^{7}$	44	「
Traffic Volume（vph）	35	395	131	1004	252	954	108	1518	151
Future Volume（vph）	35	395	131	1004	252	954	108	1518	151
Lane Group Flow（vph）	35	483	131	1080	252	1056	108	1518	151
Turn Type	pm＋pt	NA	pm＋pt	NA	pm＋pt	NA	pm＋pt	NA	Perm
Protected Phases	3	8	7	4	1	6	5	2	
Permitted Phases	8		4		6		2		2
Detector Phase	3	8	7	4	1	6	5	2	2
Switch Phase									
Minimum Initial（s）	5.0	8.0	5.0	8.0	5.0	8.0	5.0	8.0	8.0
Minimum Split（s）	8.0	40.4	8.0	40.4	8.0	38.5	8.0	38.5	38.5
Total Split（s）	8.0	47.0	8.0	47.0	17.0	68.0	17.0	68.0	68.0
Total Split（\％）	5．7\％	33．6\％	5．7\％	33．6\％	12．1\％	48．6\％	12．1\％	48．6\％	48．6\％
Yellow Time（s）	3.0	4.0	3.0	4.0	3.0	4.0	3.0	4.0	4.0
All－Red Time（s）	0.0	2.4	0.0	2.4	0.0	2.5	0.0	2.5	2.5
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	3.0	6.4	3.0	6.4	3.0	6.5	3.0	6.5	6.5
Lead／Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lag
Lead－Lag Optimize？									
Recall Mode	None	None	None	None	None	C－Max	None	C－Max	C－Max
v／c Ratio	0.30	0.49	0.50	1.04	1.13	0.67	0.40	0.99	0.21
Control Delay	35.3	41.3	39.5	85.3	147.6	12.9	17.5	60.8	13.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	35.3	41.3	39.5	85.3	147.6	12.9	17.5	60.8	13.1
Queue Length 50th（m）	5.7	51.6	22.6	~ 161.0	～61．2	24.7	11.7	200.0	11.6
Queue Length 95th（m）	12.7	67.2	36.8	\＃200．3 m	\＃107．4	51.3	19.8	\＃249．3	24.9
Internal Link Dist（m）		745.4		810.9		164.2		393.3	
Turn Bay Length（m）	40.0		60.0		80.0		40.0		30.0
Base Capacity（vph）	115	994	262	1040	223	1574	302	1526	709
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.30	0.49	0.50	1.04	1.13	0.67	0.36	0.99	0.21
Intersection Summary									

Cycle Length： 140
Actuated Cycle Length： 140
Offset： 0 （0\％），Referenced to phase 2：SBTL and 6：NBTL，Start of Green
Natural Cycle： 135
Control Type：Actuated－Coordinated
～Volume exceeds capacity，queue is theoretically infinite．
Queue shown is maximum after two cycles．
\＃95th percentile volume exceeds capacity，queue may be longer．
Queue shown is maximum after two cycles．
m Volume for 95 th percentile queue is metered by upstream signal．
Splits and Phases：20：Cawthra Rd \＆Rathburn Rd

[^6]Queues
21：Cawthra Rd \＆Meadows Blvd

	4		4	\uparrow	\downarrow
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Configurations	＊	「	\％	个4	性
Traffic Volume（vph）	46	17	61	808	1783
Future Volume（vph）	46	17	61	808	1783
Lane Group Flow（vph）	46	17	61	808	2030
Turn Type	Prot	Perm	pm＋pt	NA	NA
Protected Phases	4		1	6	2
Permitted Phases		4	6		
Detector Phase	4	4	1	6	2
Switch Phase					
Minimum Initial（s）	8.0	8.0	5.0	8.0	8.0
Minimum Split（s）	28.2	28.2	8.0	27.0	23.0
Total Split（s）	28.6	28.6	12.0	126.4	114.4
Total Split（\％）	18．5\％	18．5\％	7．7\％	81．5\％	73．8\％
Yellow Time（s）	4.0	4.0	3.0	4.0	4.0
All－Red Time（s）	2.2	2.2	0.0	2.0	2.0
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	6.2	6.2	3.0	6.0	6.0
Lead／Lag			Lead		Lag
Lead－Lag Optimize？					
Recall Mode	None	None	None	C－Max	C－Max
v／c Ratio	0.37	0.13	0.32	0.27	0.73
Control Delay	75.5	26.4	5.9	2.5	11.6
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	75.5	26.4	5.9	2.5	11.6
Queue Length 50th（m）	12.6	0.0	1.8	19.0	146.3
Queue Length 95th（m）	24.7	7.4	4.3	27.8	211.4
Internal Link Dist（ m ）	191.7			393.3	365.1
Turn Bay Length（ m ）		10.0	30.0		
Base Capacity（vph）	245	234	200	3034	2768
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v／c Ratio	0.19	0.07	0.30	0.27	0.73
Intersection Summary					

Cycle Length： 155
Actuated Cycle Length： 155
Offset： 0 （0\％），Referenced to phase 2：SBT and 6：NBTL，Start of Green
Natural Cycle： 100
Control Type：Actuated－Coordinated
Splits and Phases：21：Cawthra Rd \＆Meadows Blvd

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	44	「	${ }^{*}$	中4	「	＊	中4	「	${ }^{7}$	中4	「
Traffic Volume（vph）	131	588	327	170	1178	97	172	591	65	295	1595	430
Future Volume（vph）	131	588	327	170	1178	97	172	591	65	295	1595	430
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5	3.5	3.7	3.5
Total Lost time（s）	4.0	7.9	7.9	3.0	7.9	7.9	4.0	8.4	8.4	4.0	8.4	8.4
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb，ped／bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98
Flpb，ped／bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）	1700	3476	1521	1700	3476	1521	1700	3476	1521	1700	3476	1487
Flt Permitted	0.11	1.00	1.00	0.25	1.00	1.00	0.95	1.00	1.00	0.32	1.00	1.00
Satd．Flow（perm）	198	3476	1521	441	3476	1521	1700	3476	1521	566	3476	1487
Peak－hour factor，PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj．Flow（vph）	131	588	327	170	1178	97	172	591	65	295	1595	430
RTOR Reduction（vph）	0	0	145	0	0	68	0	0	42	0	0	72
Lane Group Flow（vph）	131	588	182	170	1178	29	172	591	23	295	1595	358
Confl．Peds．（\＃／hr）							8					8
Turn Type	pm＋pt	NA	Perm	pm＋pt	NA	Perm	Prot	NA	Perm	pm＋pt	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8		8	4		4			6	2		2
Actuated Green，G（s）	40.1	36.1	36.1	50.1	42.1	42.1	11.0	50.5	50.5	73.6	58.6	58.6
Effective Green，g（s）	40.1	36.1	36.1	50.1	42.1	42.1	11.0	50.5	50.5	73.6	58.6	58.6
Actuated g／C Ratio	0.29	0.26	0.26	0.36	0.30	0.30	0.08	0.36	0.36	0.53	0.42	0.42
Clearance Time（s）	4.0	7.9	7.9	3.0	7.9	7.9	4.0	8.4	8.4	4.0	8.4	8.4
Vehicle Extension（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Grp Cap（vph）	99	896	392	256	1045	457	133	1253	548	452	1454	622
v／s Ratio Prot	c0．04	0.17		0.05	c0．34		c0．10	0.17		0.09	c0．46	
v／s Ratio Perm	c0．34		0.12	0.18		0.02			0.02	0.25		0.24
v／c Ratio	1.32	0.66	0.46	0.66	1.13	0.06	1.29	0.47	0.04	0.65	1.10	0.58
Uniform Delay，d1	50.3	46.4	43.8	33.3	49.0	34.9	64.5	34.5	29.1	20.2	40.7	31.2
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay，d2	199.7	2.3	1.8	8.3	69.8	0.1	176.6	1.3	0.1	4.5	54.8	3.8
Delay（s）	250.0	48.7	45.6	41.7	118.7	35.0	241.1	35.7	29.2	24.7	95.5	35.0
Level of Service	F	D	D	D	F	D	F	D	C	C	F	D
Approach Delay（s）		73.0			104.1			77.9			75.3	
Approach LOS		E			F			E			E	
Intersection Summary												
HCM 2000 Control Delay			82.6	HCM 2000 Level of Service				F				
HCM 2000 Volume to Capacity ratio			1.17									
Actuated Cycle Length（s）			140.0		Sum of los	time（s）			24.3			
Intersection Capacity Utilization			113．7\％	ICU Level of Service					H			
Analysis Period（min）		15										

c Critical Lane Group

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{4}$	个个	F	${ }^{7}$	个个	「	\％	个个	「	\％	个4	F
Traffic Volume（vph）	131	588	327	170	1178	97	172	591	65	295	1595	430
Future Volume（vph）	131	588	327	170	1178	97	172	591	65	295	1595	430
Lane Group Flow（vph）	131	588	327	170	1178	97	172	591	65	295	1595	430
Turn Type	pm＋pt	NA	Perm	pm＋pt	NA	Perm	Prot	NA	Perm	pm＋pt	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8		8	4		4			6	2		2
Detector Phase	3	8	8	7	4	4	1	6	6	5	2	2
Switch Phase												
Minimum Initial（s）	4.0	12.0	12.0	5.0	12.0	12.0	4.0	12.0	12.0	5.0	12.0	12.0
Minimum Split（s）	8.0	40.9	40.9	8.0	40.9	40.9	8.0	41.4	41.4	9.0	41.4	41.4
Total Split（s）	8.0	44.0	44.0	14.0	50.0	50.0	15.0	57.0	57.0	25.0	67.0	67.0
Total Split（\％）	5．7\％	31．4\％	31．4\％	10．0\％	35．7\％	35．7\％	10．7\％	40．7\％	40．7\％	17．9\％	47．9\％	47．9\％
Yellow Time（s）	3.0	5.5	5.5	3.0	5.5	5.5	3.0	5.5	5.5	3.0	5.5	5.5
All－Red Time（s）	1.0	2.4	2.4	0.0	2.4	2.4	1.0	2.9	2.9	1.0	2.9	2.9
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	4.0	7.9	7.9	3.0	7.9	7.9	4.0	8.4	8.4	4.0	8.4	8.4
Lead／Lag	Lead	Lag	Lag									

	Nonechan	1.25	0.66	0.61	0.62	1.13	0.18	1.29	0.47	0.10	0.63	1.10

Intersection Summary

Cycle Length： 140
Actuated Cycle Length： 140
Offset： 0 （0\％），Referenced to phase 2：SBTL and 6：NBT，Start of Green
Natural Cycle： 140
Control Type：Actuated－Coordinated
～Volume exceeds capacity，queue is theoretically infinite．
Queue shown is maximum after two cycles．
\＃95th percentile volume exceeds capacity，queue may be longer．
Queue shown is maximum after two cycles．
Splits and Phases：22：Cawthra Rd \＆Eastgate Pkwy

IBI Group－JRW／AC

APPENDIX D4

TRAFFICI PEDESTRIAN SIGNAL WARRANT ANALYSIS

Assessment of Pedestrian Crossing at Cawthra Road - Needham Lane Intersection

Traffic Signal Options:

Type 1 - Full Intersection Signals
Type 2 - Intersection Pedestrian Signal (IPS)
Type 3 - Pedestrian Crossovers (PXO) - not appropriate where AADT > 35,000

Input Data

Intersection Turning Movement Counts:

- 2015 Turing Movements (2015-04-14)

Corridor Demands:

- 2015 ADT along Cawthra Road at Needham Lane $=35,353$ vehicles/day

Collison Experience:

- 8 collisions (5 years 2008-2012, including 3-2008, 1-2009, 0-2010, 4-2011, and 0-2012)
- For analysis, assume 4 collisions (potentially corrected through signals) over 3 years

8 Hour Pedestrian Crossing Volume:

- Year 2014 TM Counts $=81$ pedestrians, Year 2015 TM Counts $=30$ pedestrians
- For analysis (erroring on the side of meeting the warrant), assume 81 pedestrians per year, 100\% crossing pedestrians are delayed more than 10 seconds; and 20% assisted (i.e. seniors, disabled, and children). Pedestrian volumes remain below 200 per 8 hrs (critical threshold level)
- Disregard centre traffic island which would allow analysis based on peak direction volume only (rather than two-way volume) when assessing Warrants 6A and 6B

Driver Sight Lines:

Driver sight lines (turning onto Cawthra Road from Needham) are partially obstructed by retaining wall, pedestrian railing, and crest curve along Cawthra Road south of intersection. Driver sight distance available (3 m back from edge of pavement) $=225 \mathrm{~m}$, satisfies minimum requirement based on $70 \mathrm{~km} / \mathrm{h}$ (50km/h posted speed).

- \quad Stopping Sight Distance $(S S D)=105 \mathrm{~m}$ ($70 \mathrm{~km} / \mathrm{h}$ design speed)
- Sight Distance Turning Left from Needham Lane = 150m passenger car, 185m single unit truck, and 225 m semi-trailer (per TAC Figure 9.9 .4 based on $70 \mathrm{~km} / \mathrm{h}$ design speed

Photo: Looking north along Cawthra Road from Needham Lane (June 2019)

Results of Warrant Assessment (see attached excel sheet output):

Warrant 1 - Minimum Vehicular Volume $=\underline{41 \%}$
Warrant 2 - Delay to Cross Traffic $=\underline{58 \%}$
Warrant 3 - Volume/ Delay Combination $=$ Not Justified
Warrant 4 - Minimum Four Hour Vehicle Volume = 46\%
Warrant 5 - Collision Experience $=\underline{27 \%}$
Warrant 6A - Pedestrian Crossing Volume $=$ Not Justified
Warrant 6B - Pedestrian Crossing Delay $=$ Not Justified
References:
OTM Book 12 Traffic Signals (Section 4.9)
OTM Book 15 Pedestrian Crossing Treatments (Section 5)

Conclusions:

- Does not meet warrants for full traffic signals or IPS
- Signal not required for purposes of 'pedestrian system connectivity' (primarily serves as access to/from existing bus stop on Cawthra Road)
- Alternative crossing opportunity:
- Closest signalized crossing is Queensway Intersection located $\underline{590 m}$ to the south (exceeds desirable maximum of 400 m)
- Dundas Street signalized crossing is located $\underline{525 m}$ to the north (however no pedestrian demands generated between Needham Lane and Dundas Street)
Recommendation:
Although the distance to the adjacent signal is greater than maximum desirable, the warrants are not met for a signalized crossing and therefore signals are not recommended at this time. Recommend monitoring this location for an Intersection Pedestrian Signal (IPS) in the future, similar to that recently installed on Cawthra Road at Breckenridge. Undertake pedestrian counts annually going forward, including any pedestrian crossings immediately north and south of intersection. Counts are to accurately capture pedestrians delayed $>10 \mathrm{sec}$, assisted versus unassisted users, etc.

Input Data Sheet	Analysis Sheet	Results Sheet	Proposed Collision	GO TO Justification:	
What are the intersecting roadways? CAM	CAWTHRA ROAD - NEEDHAM LANE INTERSECTION				\checkmark
What is the direction of the Main Road street?	North-South	$\square \mathrm{Wh}$	data collected? EX	ING (2014-04-14)	

Justification 1-4: Volume Warrants

a.- Number of lanes on the Main Road?
b.- Number of lanes on the Minor Road?
c.- How many approaches? 4
d.- What is the operating environment? Urban Population $>=10,000$ AND Speed $<70 \mathrm{~km} / \mathrm{hr}$
e.- What is the eight hour vehicle volume at the intersection? (Please fill in table below)

Justification 5: Collision Experience

Preceding Months	Number of Collisions *
$1-12$	0
$13-24$	4
$25-36$	0

* Include only collisions that are susceptable to correction through the installation of traffic signal control

Justification 6: Pedestrian Volume

a.- Please fill in table below summarizing total pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

	Zone 1		Zone 2		Zone 3 (if needed)		Zone 4 (if needed)		Total
	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	
Total 8 hour pedestrian volume	16	65	0	0	0	0	0	0	
Factored 8 hour pedestrian volume	97		0		0		0		
\% Assigned to crossing rate	100\%		50\%		0\%		0\%		
Net 8 Hour Pedestrian Volume at Crossing									97
Net 8 Hour Vehicular Volume on Street Being Crossed									19,455

b.- Please fill in table below summarizing delay to pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

	Zone 1		Zone 2		Zone 3 (if needed)		Zone 4 (if needed)		Total
	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	
Total 8 hour pedestrian volume	16	65	0	0	0	0	0	0	
Total 8 hour pedestrians delayed greater than 10 seconds	16	65	0	0	0	0	0	0	
Factored volume of total pedestrians				0					
Factored volume of delayed pedestrians				0					
\% Assigned to Crossing Rate				\%					
Net 8 Hour Volume of Total Pedestrians									97
Net 8 Hour Volume of Delayed Pedestrians									97

	Input Sheet	Results Sheet	Proposed Collision	GO TO Justification:	
Analysis Sheet	Input Sheet	Resuks Sheet	Proposed Colision		

Intersection: CAWTHRA ROAD - NEEDHAM LANE INTERSECTION Count Date: EXISTING (2014-04-14)

Justification 1: Minimum Vehicle Volumes

Restricted Flow Urban Conditions

Justification	Guidance Approach Lanes				Percentage Warrant								Total Across	Section Percent
	1 Lanes		2 or More Lanes		Hour Ending									
Flow Condition	FREE FLOW	RESTR. FLOW \square	FREE FLOW	RESTR. FLOW \sqrt{V}	8:00	9:00	12:00	13:00	14:00	16:00	17:00	18:00		
1A	480	720	600	900	2,659	2,900	1,841	2,061	2,066	2,725	2,990	2,764		
	COMPLIANCE \%				100	100	100	100	100	100	100	100	800	100
1B	120	170	120	170	38	31	81	83	85	69	94	70		
	COMPLIANCE \%				22	18	48	49	50	41	55	41	324	41
Restricted Flow					Both 1A and 1B 100\% Fulfilled each of 8 hours									

Justification 2: Delay to Cross Traffic
Restricted Flow Urban Conditions

Justification 3: Combination

Combination Justification 1 and 2

Justification Satisfied 80\% or More				Two Justifications Satisfied 80\% or More	
Justification 1	Minimum Vehicle Volume	YES	NO- ${ }^{-1}$	YES	No ∇
Justification 2	Delay Cross Traffic	YES Γ	NOV		NOT JUSTIFIED

Justification 4: Four Hour Volume

Justification	Time Period	Total Volume of Both Approaches (Main)	Heaviest Minor Approach Y (actual)	Required Value Y (warrant threshold)	Average \% Compliance	Overall \% Compliance
		X	Y (actual)	Y (warrant threshold)		
Justification 4	9:00	2,869	16	115	14 \%	46 \%
	16:00	2,656	59	115	51 \%	
	17:00	2,896	78	115	68 \%	
	18:00	2,694	58	115	50 \%	

Analysis Sheet	Input Sheet	Results Sheet	Proposed Collision	GO TO Justification:	
Analysis Sheet	Input Sheet	Results Sheet	Proposed Collision		-

Intersection: CAWTHRA ROAD - NEEDHAM LANE INTERSECTION Count Date: EXISTING (2014-04-14)

Justification 5: Collision Experience

Justification	Preceding Months	\% Fulfillment	Overall \% Compliance
Justification 5	$1-12$	0%	
	$13-24$	80	27

Justification 6: Pedestrian Volume

Pedestrian Volume Analysis

8 Hour Vehicular Volume V_{8}		Net 8 Hour Pedestrian Volume				
		< 200	200-275	276-475	476-1000	>1000
Justification 6A	<1440					
	1440-2600					
	2601-7000					
	> 7000	Not Justified				

Pedestrian Delay Analysis

Net Total 8 Hour Volume of Total Pedestrians		Net Total 8 Hour Volume of Delayed Pedestrians		
		<75	75-130	> 130
Justification6B	< 200		Not Justified	
	200-300			
	> 300			

Results Sheet \quad Input Sheet \quad Analysis Sheet \quad Proposed Collision

Intersection: CAWTHRA ROAD - NEEDHAM LANE INTERSECTI Count Date: EXISTING (2014-04-14)

Summary Results

Justification			Compliance		Signal Justified?			
			YES	NO				
1. Minimum Vehicular Volume	A	Total Volume			100	\%	\square	V
		Crossing Volume	41	\%				
2. Delay to Cross Traffic	A	Main Road	100	\%	\square	\checkmark		
	B	Crossing Road	58	\%				
3. Combination	A	Justificaton 1	41	\%	\square	∇		
	B	Justification 2	58	\%				
4. 4-Hr Volume			46	\%	Г	\checkmark		

5. Collision Experience	$27 \quad \%$	\square	∇

6. Pedestrians	A	Volume	Justification not met		\square
	B	Delay	Justification not met		

Input Data Sheet	Analysis Sheet	Results Sheet	Proposed Collision	GO TO Justification:	
What are the intersecting roadways? C	CAWTHRA ROAD - NEEDHAM LANE INTERSECTION				\checkmark
What is the direction of the Main Road street?	North-South	When was the data collected? 2031 Horizon (Existing $\times 1.141$)			

Justification 1-4: Volume Warrants

a.- Number of lanes on the Main Road?
b.- Number of lanes on the Minor Road?
c.- How many approaches? 4
d.- What is the operating environment? Urban Population $>=10,000$ AND Speed $<70 \mathrm{~km} / \mathrm{hr}$
e.- What is the eight hour vehicle volume at the intersection? (Please fill in table below)

Justification 5: Collision Experience

Preceding Months	Number of Collisions*
$1-12$	0
$13-24$	0
$25-36$	0

* Include only collisions that are susceptable to correction through the installation of traffic signal control

Justification 6: Pedestrian Volume

a.- Please fill in table below summarizing total pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

	Zone 1		Zone 2		Zone 3 (if needed)		Zone 4 (if needed)		Total
	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	
Total 8 hour pedestrian volume	16	65	0	0	0	0	0	0	
Factored 8 hour pedestrian volume	97		0		0		0		
\% Assigned to crossing rate	100\%		50\%		0\%		0\%		
Net 8 Hour Pedestrian Volume at Crossing									97
Net 8 Hour Vehicular Volume on Street Being Crossed									22,123

b.- Please fill in table below summarizing delay to pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

	Zone 1		Zone 2		Zone 3 (if needed)		Zone 4 (if needed)		Total
	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	
Total 8 hour pedestrian volume	16	65	0	0	0	0	0	0	
Total 8 hour pedestrians delayed greater than 10 seconds	16	65	0	0	0	0	0	0	
Factored volume of total pedestrians				0					
Factored volume of delayed pedestrians				0					
\% Assigned to Crossing Rate				\%					
Net 8 Hour Volume of Total Pedestrians									97
Net 8 Hour Volume of Delayed Pedestrians									97

	Input Sheet	Results Sheet	Proposed Collision	GO TO Justification:	
Analysis Sheet	Input Sheet	Resuls Sheet	Proposed Collsion		

Intersection: CAWTHRA ROAD - NEEDHAM LANE INTERSECTION Count Date: 2031 Horizon (Existing x 1.141)

Justification 1: Minimum Vehicle Volumes

Restricted Flow Urban Conditions

Justification	Guidance Approach Lanes				Percentage Warrant								Total Across	Section Percent
	1 Lanes		2 or More Lanes		Hour Ending									
Flow Condition	FREE FLOW	RESTR. FLOW \square	FREE FLOW	RESTR. FLOW \sqrt{V}	8:00	9:00	12:00	13:00	14:00	16:00	17:00	18:00		
1A	480	720	600	900	3,020	3,294	2,078	2,328	2,335	3,091	3,390	3,138		
	COMPLIANCE \%				100	100	100	100	100	100	100	100	800	100
1B	120	170	120	170	38	31	81	83	85	69	94	70		
	COMPLIANCE \%				22	18	48	49	50	41	55	41	324	41
Restricted Flow					Both 1A and 1B 100\% Fulfilled each of 8 hours									

Justification 2: Delay to Cross Traffic
Restricted Flow Urban Conditions

Justification 3: Combination

Combination Justification 1 and 2

Justification Satisfied 80\% or More				Two Justifications Satisfied 80\% or More	
Justification 1	Minimum Vehicle Volume	YES \square	NOF	YES	No \downarrow
Justification 2	Delay Cross Traffic	YES Γ	NOV		NOT JUSTIFIED

Justification 4: Four Hour Volume

Justification	Time Period	Total Volume of Both Approaches (Main)	Heaviest Minor Approach Y (actual)	Required Value Y (warrant threshold)	Average \% Compliance	Overall \% Compliance
		X	Y (actual)	Y (warrant threshold)		
Justification 4	9:00	3,263	16	115	14 \%	46 \%
	16:00	3,022	59	115	51 \%	
	17:00	3,296	78	115	68 \%	
	18:00	3,068	58	115	50 \%	

Analysis Sheet	Input Sheet	Results Sheet	Proposed Collision	GO TO Justification:	
	Input Sheet	Results Sheet	Proposed Colision		-

Intersection: CAWTHRA ROAD - NEEDHAM LANE INTERSECTION Count Date: 2031 Horizon (Existing x 1.141)

Justification 5: Collision Experience

Justification	Preceding Months	\% Fulfillment	Overall \% Compliance
Justification 5	$1-12$	0%	0%

Justification 6: Pedestrian Volume

Pedestrian Volume Analysis

8 Hour Vehicular Volume V_{8}		Net 8 Hour Pedestrian Volume				
		< 200	200-275	276-475	476-1000	>1000
Justification 6A	<1440					
	1440-2600					
	2601-7000					
	> 7000	Not Justified				

Pedestrian Delay Analysis

Net Total 8 Hour Volume of Total Pedestrians		Net Total 8 Hour Volume of Delayed Pedestrians		
		<75	75-130	> 130
Justification6B	< 200		Not Justified	
	200-300			
	> 300			

Results Sheet \quad Input Sheet \quad Analysis Sheet \quad Proposed Collision

Intersection: CAWTHRA ROAD - NEEDHAM LANE INTERSECTI Count Date: 2031 Horizon (Existing x 1.141)

Summary Results

Justification			Compliance		Signal Justified?			
			YES	NO				
1. Minimum Vehicular Volume	A	Total Volume			100	\%	■	\checkmark
	B	Crossing Volume	41	\%				
2. Delay to Cross Traffic	A	Main Road	100	\%	Γ	∇		
	B	Crossing Road	58	\%				
3. Combination	A	Justificaton 1	41	\%	\square	∇		
		Justification 2	58	\%				
4. 4-Hr Volume			46	\%	Г	\checkmark		

5. Collision Experience	$0 \quad \%$	\square	∇

6. Pedestrians	A	Volume	Justification not met		
	B	Delay		Justification not met	

Input Data Sheet		Analysis Sheet	Results Sheet	Proposed Collision	GO TO Justification:	
What are the intersecting roadways?						∇
What is the direction of the Main Road street?		North-South	When was the data collected? 2031 Horizon 2031 Horizon			

Justification 1-4: Volume Warrants

a.- Number of lanes on the Main Road?
b.- Number of lanes on the Minor Road?
c.- How many approaches?
$3 \quad \square$
d.- What is the operating environment? Urban Population $>=10,000$ AND Speed $<70 \mathrm{~km} / \mathrm{hr}$
e.- What is the eight hour vehicle volume at the intersection? (Please fill in table below)

Hour Ending	Main Northbound Approach			Minor Eastbound Approach			Main Southbound Approach				Minor Westbound Approach				PedestriansCrossing Main
	LT	TH	RT	LT	TH	RT	LT		TH	RT	LT	TH	RT		
7:00	29	1037						0	1143					0	
8:00	14	1187						0	1464					0	
9:00	18	1510						0	1643					0	
10:00	24	1115						0	1140					0	
15:00	28	1130						0	1094					0	
16:00	36	1524						0	1499					0	
17:00	21	1506						0	1767					0	
18:00	13	1440						0	1924					0	
Total	183	10,449	0	144	0	347	0		11,674	239	0	0	0		0

Justification 5: Collision Experience

Preceding Months	Number of Collisions ${ }^{*}$
$1-12$	0
$13-24$	0
$25-36$	0

> * Include only collisions that are susceptable to correction through the installation of traffic signal control

Justification 6: Pedestrian Volume

a.- Please fill in table below summarizing total pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

	Zone 1		Zone 2		Zone 3 (if needed)		Zone 4 (if needed)		Total
	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	
Total 8 hour pedestrian volume	0	0	0	0	0	0	0	0	
Factored 8 hour pedestrian volume	0		0		0		0		
\% Assigned to crossing rate	100\%		50\%		0\%		0\%		
Net 8 Hour Pedestrian Volume at Crossing									0
Net 8 Hour Vehicular Volume on Stre	Being Cro	sed							0

b.- Please fill in table below summarizing delay to pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

Analysis Sheet	Input Sheet	Results Sheet	Proposed Collision	GO TO Justification:	
Intersection: CAWTHRA ROA	E INTERSEC	Count Da	31 Horizon		

Justification 1: Minimum Vehicle Volumes

Restricted Flow Urban Conditions

Justification	Guidance Approach Lanes				Percentage Warrant								Total Across	Section Percent
	1 Lanes		2 or More Lanes		Hour Ending									
Flow Condition	free flow	RESTR. FLOW \square	fREE FLOW	RESTR. FLOW	7:00	8:00	9:00	10:00	15:00	16:00	17:00	18:00		
1A	480	720	600	900	2,310	2,729	3,276	2,372	2,353	3,163	3,382	3,451		
	COMPLIANCE \%				100	100	100	100	100	100	100	100	800	100
1B	180	255	180	255	72	32	53	66	67	79	68	54		
	COMPLIANCE \%				28	13	21	26	26	31	27	21	193	24
	Rest Signal	cted F stificat			Both 1A and 1B 100\% Fulfilled each of 8 hours									

Justification 2: Delay to Cross Traffic
Restricted Flow Urban Conditions

Justification	Guidance Approach Lanes				Percentage Warrant								Total Across	Section Percent
	1 lanes		2 or More lanes		Hour Ending									
Flow Condition	FREE FLOW	RESTR. FLOW	FREE FLOW	$\begin{aligned} & \text { RESTR. } \\ & \text { FLOW } \\ & \nabla \end{aligned}$	7:00	8:00	9:00	10:00	15:00	16:00	17:00	18:00		
2A	480	720	600	900	2,238	2,697	3,223	2,306	2,286	3,084	3,314	3,397		
	COMPLIANCE \%				100	100	100	100	100	100	100	100	800	100
2B	50	75	50	75	27	6	22	18	19	28	14	10		
	COMPLIANCE \%				36	8	29	24	25	37	19	13	192	24
Restricted Flow					Both 2A and 2B 100\% fulfilled each of 8 hours								$\begin{aligned} & \sqrt{v} \\ & \sqrt{v} \end{aligned}$	

Justification 3: Combination

Combination Justification 1 and 2

Justification Satisfied 80\% or More				Two Justifications Satisfied 80\% or More		
Justification 1	Minimum Vehicle Volume	YES		NOV	YES	「

Justification 4: Four Hour Volume

Justification	Time Period	Total Volume of Both Approaches (Main)	Heaviest Minor Approach	Required Value	Average \% Compliance	Overall \% Compliance
		X	Y (actuail)	Y (warrant threshold)		
Justification 4 .	9:00	3,223	53	115	46 \%	55 \%
	16:00	3,084	79	115	69 \%	
	17:00	3,314	68	115	59 \%	
	18:00	3,397	54	115	47 \%	

Justification 5: Collision Experience

Justification	Preceding Months	\% Fulfillment	Overall \% Compliance
Justification 5	1-12	0 \%	0 \%
	13-24	0 \%	
	25-36	0 \%	

Justification 6: Pedestrian Volume

Pedestrian Volume Analysis

8 Hour Vehicular Volume V_{8}		Net 8 Hour Pedestrian Volume				
		< 200	200-275	276-475	476-1000	>1000
Justification 6A	<1440					
	1440-2600					
	2601-7000	Not Justified				
	> 7000					

Pedestrian Delay Analysis

Net Total 8 Hour Volume of Total Pedestrians		Net Total 8 Hour Volume of Delayed Pedestrians		
		<75	75-130	> 130
Justification 6B	< 200	Not Justified		
	200-300			
	> 300			

Results Sheet \quad Input Sheet \quad Analysis Sheet \quad Proposed Collision | Go Justification: |
| :--- |

Intersection: CAWTHRA ROAD - ORWELL AVE INTERSECTION Count Date: 2031 Horizon

Summary Results

Justification			Compliance		Signal Justified?			
			YES	NO				
1. Minimum Vehicular Volume	A	Total Volume			100	\%	Γ	V
	B	Crossing Volume	24	\%				
2. Delay to Cross Traffic	A	Main Road	100	\%	Г	V		
	B	Crossing Road	24	\%				
3. Combination	A	Justificaton 1	24	\%	Γ	V		
	B	Justification 2	24	\%				
4. 4-Hr Volume			55	\%	Г	V		

| 5. Collision Experience | $0 \quad \%$ | \square | ∇ |
| :--- | :--- | :--- | :--- | :--- |

6. Pedestrians	A	Volume	Justification not met	\square	\sqrt{V}
	B	Delay	Justification not met		

Assessment of Pedestrian Crossing at Cawthra Road - Santee Gate Intersection

Traffic Signal Options:

Type 1 - Full Intersection Signals
Type 2 - Intersection Pedestrian Signal (IPS)
Type 3 - Pedestrian Crossovers (PXO) - not appropriate where AADT > 35,000

Input Data

Intersection Turning Movement Counts:

- 2015 Turing Movements (2015-05-12)

Corridor Demands:

- 2015 ADT along Cawthra Road at Needham Lane $=35,353$ vehicles/day

Collison Experience:

- 6 collisions (5 years 2008-2012, including 2-2008, 0-2009, 2-2010, 0-2011, and 2-2012)
- For analysis, assume 4 collisions (potentially corrected through signals) over 3 years

8 Hour Pedestrian Crossing Volume:

- Year 2015 TM Counts = No pedestrians recorded crossing Cawtha Road

Results of Warrant Assessment (see attached excel sheet output):

Warrant 1 - Minimum Vehicular Volume = 12\%
Warrant 2 - Delay to Cross Traffic = 7\%
Warrant 3 - Volume/ Delay Combination = Not Justified
Warrant 4 - Minimum Four Hour Vehicle Volume $=\underline{20 \%}$
Warrant 5 - Collision Experience $=\underline{27 \%}$
Warrant 6A - Pedestrian Crossing Volume $=$ Not Justified
Warrant 6B - Pedestrian Crossing Delay = Not Justified

References

OTM Book 12 Traffic Signals (Section 4.9)
OTM Book 15 Pedestrian Crossing Treatments (Section 5)

Conclusions:

- Does not meet warrants for full traffic signals or IPS
- Signal not required for purposes of 'pedestrian system connectivity'
- Alternative crossing opportunity:
- Closest signalized crossing is Bloor Intersection located $\underline{315 m}$ to the north
- Silver Creek signalized crossing is located 375 m to the south

Recommendation:

Signals are not recommended. The distance to the adjacent signal is within 400 m .

Input Data Sheet	Analysis Sheet	Results Sheet	Proposed Collision	GO TO Justification:	
What are the intersecting roadways? CAN	CAWTHRA ROAD - SANTEE GATE INTERSECTION				\cdots
What is the direction of the Main Road street?	North-South	Wh	data collected? EX	ING (2015-05-12)	

Justification 1-4: Volume Warrants

a.- Number of lanes on the Main Road?
b.- Number of lanes on the Minor Road?
c.- How many approaches? 4
d.- What is the operating environment? Urban Population $>=10,000$ AND Speed $<\mathbf{7 0} \mathrm{km} / \mathrm{hr}$
e.- What is the eight hour vehicle volume at the intersection? (Please fill in table below)

Justification 5: Collision Experience

Preceding Months	Number of Collisions *
$1-12$	2
$13-24$	0
$25-36$	2

* Include only collisions that are susceptable to correction through the installation of traffic signal control

Justification 6: Pedestrian Volume

a.- Please fill in table below summarizing total pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

b.- Please fill in table below summarizing delay to pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

	Zone 1		Zone 2		Zone 3 (if needed)		Zone 4 (if needed)		Total
	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	
Total 8 hour pedestrian volume	0	0	0	0	0	0	0	0	
Total 8 hour pedestrians delayed greater than 10 seconds	0	0	0	0	0	0	0	0	
Factored volume of total pedestrians				0					
Factored volume of delayed pedestrians				0				0	
\% Assigned to Crossing Rate				\%				\%	
Net 8 Hour Volume of Total Pedestrians									0
Net 8 Hour Volume of Delayed Pedestrians									0

	Input Sheet	Results Sheet	Proposed Collision	GO TO Justification:	
	Input Sheet	Resuks Sheet	Proposed Collsion		\checkmark

Intersection: CAWTHRA ROAD - SANTEE GATE INTERSECTION Count Date: EXISTING (2015-05-12)

Justification 1: Minimum Vehicle Volumes

Restricted Flow Urban Conditions

Justification	Guidance Approach Lanes				Percentage Warrant								Total Across	Section Percent
	1 Lanes		2 or More Lanes		Hour Ending									
Flow Condition	FREE FLOW	RESTR. FLOW \square	FREE FLOW	RESTR. FLOW \sqrt{V}	8:00	9:00	12:00	13:00	14:00	16:00	17:00	18:00		
1A	480	720	600	900	2,948	3,156	2,131	2,368	2,147	2,844	3,154	3,130		
	COMPLIANCE \%				100	100	100	100	100	100	100	100	800	100
1B	120	170	120	170	24	33	17	23	20	16	19	15		
	COMPLIANCE \%				14	19	10	14	12	9	11	9	98	12
Restricted Flow					Both 1A and 1B 100\% Fulfilled each of 8 hours									

Justification 2: Delay to Cross Traffic
Restricted Flow Urban Conditions

Justification 3: Combination

Combination Justification 1 and 2

Justification Satisfied 80\% or More				Two Justifications Satisfied 80\% or More	
Justification 1	Minimum Vehicle Volume	YES	NOV ${ }^{-7}$	YES	No ∇
Justification 2	Delay Cross Traffic	YES Γ	NOV		NOT JUSTIFIED

Justification 4: Four Hour Volume

Justification	Time Period	Total Volume of Both Approaches (Main)	Heaviest Minor Approach Y (actual)	Required Value Y (warrant threshold)	Average \% Compliance	Overall \% Compliance
		X	Y (actual)	Y (warrant threshold)		
Justification 4	8:00	2,924	24	115	21 \%	20 \%
	9:00	3,123	33	115	29 \%	
	17:00	3,135	19	115	17 \%	
	18:00	3,115	15	115	13 \%	

Analysis Sheet	Input Sheet	Results Sheet	Proposed Collision	GO TO Justification:	
	Input Sheet	Results Sheet	Proposed Colilion		-

Intersection: CAWTHRA ROAD - SANTEE GATE INTERSECTION Count Date: EXISTING (2015-05-12)

Justification 5: Collision Experience

Justification	Preceding Months	\% Fulfillment	Overall \% Compliance
Justification 5	$1-12$	40%	
	$12-24$	0%	27

Justification 6: Pedestrian Volume

Pedestrian Volume Analysis

8 Hour Vehicular Volume V_{8}		Net 8 Hour Pedestrian Volume				
		< 200	200-275	276-475	476-1000	>1000
Justification 6A	<1440					
	1440-2600					
	2601-7000					
	> 7000	Not Justified				

Pedestrian Delay Analysis

Net Total 8 Hour Volume of Total Pedestrians		Net Total 8 Hour Volume of Delayed Pedestrians		
		<75	75-130	> 130
Justification 6B	< 200	Not Justified		
	200-300			
	> 300			

Results Sheet \quad Input Sheet \quad Analysis Sheet \quad Proposed Collision

Intersection: CAWTHRA ROAD - SANTEE GATE INTERSECTIOI Count Date: EXISTING (2015-05-12)

Summary Results

Justification			Compliance		Signal Justified?			
			YES	NO				
1. Minimum Vehicular Volume	A	Total Volume			100	\%	Γ	\checkmark
	B	Crossing Volume	12	\%				
2. Delay to Cross Traffic	A	Main Road	100	\%	「	∇		
	B	Crossing Road	7	\%				
3. Combination	A	Justificaton 1	12	\%	\square	∇		
		Justification 2	7	\%				
4. 4-Hr Volume			20	\%	Г	V		

5. Collision Experience	$27 \quad \%$	Γ	∇

6. Pedestrians	A	Volume	Justification not met		
	B	Delay		Justification not met	

[^0]: * PP - Permissive Protected; FP -Fully Protected; () denotes assumed phasing

[^1]: * PP - Permissive Protected; FP -Fully Protected; () denotes assumed phasing

[^2]: ${ }^{1}$ Out of a total of 1051 collision reports provided. Of these 1051 reports, 41 reports were discarded as they referred to incorrectly filed collisions occurring outside the Cawthra Road corridor, and 3 reports contained insufficient collision information for analysis purposes.

[^3]: IBI Group - JRW/AC

[^4]: IBI Group - JRW/AC

[^5]: Synchro 9 Report
 IBI Group - JRW/AC

[^6]: Synchro 9 Report
 IBI Group - JRW/AC

