Municipal Class Environmental Assessment for Road Improvements near Derry Road East and Alstep Drive: Environmental Study Report June 30, 2022

> Municipal Class Environmental Assessment for Road Improvements near Derry Road East and Alstep Drive:

> > Environmental Study Report

Appendix J: Drainage and Stormwater Management Report

Stormwater Management Report

Bombardier Class EA

Type of Document:

Stormwater Management Report in Support of Municipal Class Environmental Assessment **Project Name:** Municipal Class Environmental Assessment for Road Improvements near Derry Road East and Alstep Drive

Project Number:

STR – 2018572-00 **Prepared and Reviewed By:** Kate Logan, P.Eng., Project Engineer Mohd Abdur Rashid, P.Eng., Senior Water Resource Lead EXP Services Inc. 1595 Clark Boulevard Brampton, ON, L6T 4V1 t: +1.905.793.9800 f: +1.905.739.0641

Date + Time Submitted: 2020-11-17

Table of Contents

1.	Introd	Introduction 1		
	1.1	Project Description	1	
	1.2	Project Background	1	
	1.3	Purpose	2	
2.	Existir	ng Site Conditions Characterization	3	
	2.1	Tributary Areas, Outlets and Drainage Patterns	3	
	2.2	Condition of Receiving Watercourses	3	
	2.3	Watercourse and Drainage Crossings	3	
	2.4	Soil and Groundwater Conditions	3	
	2.5	Significant Natural Features	4	
3.	Storm	water Objectives	4	
	3.1	Water Quantity and Flood Control	4	
	3.2	Water Quality, Erosion and Sediment Control	4	
	3.3	Water Balance	4	
	3.4	Site Constraints	4	
4.	Future	e Drainage Conditions	5	
	4.1	Drainage Patterns	5	
	4.2	Outlet Identification	6	
5.	Hydro	logic and Hydraulic Modelling	7	
	5.1	Design Storm	7	
	5.2	Hydrologic Modeling	7	
	5.3	Hydraulic Analysis	8	
6.	SWM	and LID Features Plan and Design	8	
	6.1	Selection of Candidate Features	8	
	6.2	Evaluation of Features	9	
	6.3	Impact Assessment of Proposed Design	9	
	6.4	Development of a LID/SWM Plan	9	
	6.5	Design of Features	9	

7.	. Drainage Plan and Design				
	7.1	Minor System Design	. 9		
	7.2	Major System Design	10		
8.	Appro	val and Review Requirements	10		
9.	Future	e Design Recommendations	10		

1. Introduction

1.1 Project Description

EXP has been retained by Bombardier Aerospace to assist with its industrial development on a parcel of land situated just north of the Toronto Pearson International Airport at 1890 Alstep Drive, Mississauga, Ontario. The land is owned by the Government of Canada and administered by the Greater Toronto Airports Authority (GTAA). It is proposed to widen Menkes Drive and Bramalea Road and extend the existing Alstep Drive to improve the transportation links to this site. This work is in the Preliminary Design phase.

A Class Municipal Class Environmental Assessment (EA) is required to examine to examine the effects that these works will have on the adjacent lands.

1.2 Project Background

The study area for this Class EA is primarily along Derry Road East (865 m west and 450 m east of Bramalea Road) and Bramalea Road (485 m south of Derry Road East and 410 m north of Derry Road East). It also includes four local roads: Menkes Drive, Alstep Drive, Menway Court and Telford Way. The study area is depicted in Figure 1 and represents approximately 28.66ha in total.

Figure 1: Project Study Area

This area is located within the Etobicoke Creek watershed, which is under the jurisdiction of the Toronto and Region Conservation Authority (TRCA). Potentially, TRCA an municipal approval from the City of Mississauga would be required, however it is expected that proposed changes will represent a minimal change to overall site drainage and stormwater runoff.

The proposed modifications are located within existing right-of-ways (ROWs) and as the proposed works are changes to the ROWs there is minimal expected changes in land use or impacted to existing Environmental features.

Background Documents and References

The following is a list of the reference documents, background studies, design guidelines and data sources reviewed or used during the course of this study

- Guidelines for the Preparation of Stormwater management Report and Support of Municipal Class Environmental Assessments, June 2014, Region of Peel, Public Works Department
- City of Mississauga Section 8 Storm Drainage Design Requirements
- Region of Peel Public Works Stormwater Design Criteria and Procedure Manual, June 2019 (version 2.1)
- Ontario Ministry of the Environment Stormwater Management Planning and Design Manual, 2003
- Toronto and Region Conservation Authority (TRCA) Stormwater Management Criteria
- Low Impact Development Stormwater Management Planning and Design Guide (CVC, TRCA 2010)
- Storm Drainage Design Chart for Derryport Business Park by R.E Winter and Associates dated November 20th, 1986, Rev Jan 22nd, 1987
- Storm Drainage Areas Drawing D1 for Derryport Business Park by R.E Winter and Associates dated November 20th, 1986
- Storm Drainage Design Chart for Proposed Storm Sewer (on easement) for Menkes Construction Ltd by R.E Winter and Associates Ltd. (Major Drainage Area Z-42) dated November 199
- Menkes Construction Limited General Underground Plan Drawing G1 Storm and Sanitary Design Areas by R.E Winter and Associates Ltd. dated January 2000
- Derryport Business Park Storm Sewer Easement on Lot 19, Plan C22892 by R.E. Winter & Associate Ltd, dated May 1987
- Derryport Business Park Storm Easement Drawing C22893 by R.E Winter and Associates Ltd. dated November 1999
- Storm Channel Drawing C22894 by R.E Winter and Associates Ltd. dated November 1999
- Derryport Business Park Overland Flow Route C22886 by R.E Winter and Associates Ltd. Dated May 1987
- Derryport Business Park Overland Flow Calculations, File 21-76022M by R.E. Winter & Associate Ltd, dated January 14th, 1986
- H & R Industrial Estates Phase One Storm Easement, Plan C19361 by R.E. Winter & Associate Ltd, dated September 1981
- Stormwater Management Report, Bombardier Aviation, Proposed Flight Test Hanger & Aerostructures Facility Building, 1980 Alstep Drive, Mississauga, Ontario, dated May 6, 2020

1.3 Purpose

In support of the EA, this report will examine the implications on the existing stormwater infrastructure. The Drainage, Hydrology and Stormwater Management Assessment for this study was undertaken as part of the Class EA project to document existing drainage condition and assess the potential impacts from the proposed road improvements on overall site drainage and stormwater in the study area.

2. Existing Site Conditions Characterization

2.1 Tributary Areas, Outlets and Drainage Patterns

The internal and external drainage boundaries for pre- and post-development conditions are shown in the attached Figures 02 and 03. These figures were determined based on review of background materials including aerial maps as well as field investigations.

As this area is fully developed, all flows into the existing storm system are either from existing storm sewers or existing road catchbasins or road ditch inlet catchbasins. There are no natural channels or major ditches that drain into the storm system.

Flows from the site drain to the existing storm sewers. Storm flows from Derry Rd near Bramalea (areas 220 and 221 on Figures 02 and 03) drain via existing municipal sewers, which ultimately discharge to Spring Creek (a tributary of Etobicoke Creek) outside of the area of investigation. The remainder of the site discharge to the existing Juliet Stormwater Quality and Erosion Control Pond, which in turn drains to Etobicoke Creek.

There are no known drainage concerns and flooding issues or low points with no outlet within the area of investigation.

The area of investigation represents an existing developed industrial area which is almost fully hardscaped.

2.2 Condition of Receiving Watercourses

As discussed above, the subject site either drains to Etobicoke Creek directly or to Etobicoke Creek via the existing Juliet Stormwater Quality and Erosion Control Pond.

The Etobicoke Creek watershed is under TRCA's jurisdiction and is heavily urbanized. Etobicoke Creek drains 21,164 ha and consists of four main branches, namely: Main Etobicoke Creek, Little Etobicoke Creek, Etobicoke Creek West Branch and Spring Creek. The tributary adjacent to the subject lands is Spring Creek.

A new watershed plan for Etobicoke Creek watershed is currently under development. The existing watershed plan was completed in 2002 and updated in 2010.

In general, due to the extensive urbanization, limited and outdated stormwater management infrastructure as well as previous channelization efforts, this watershed has poor water quality due to sediment contamination and increased flood risk. In addition, urban heat island (UHI) effect is also a concern for this watercourse.

2.3 Watercourse and Drainage Crossings

There is only one culvert within the area of investigation. This culvert is 525mm in diameter and crosses under Derry Rd E west of Menkes Dr/Telford Way. However, this culvert is outside the area of the proposed modifications and therefore further no investigation is warranted.

There are no major swales or ditches within the area of investigation.

2.4 Soil and Groundwater Conditions

As per the "Supplementary Geotechnical Investigation Area 16 Land" prepared by EXP (dated May 3, 2019) the soils within the subject area are predominantly clayey sill till (mostly very stiff), with some areas of sand and gravel, underlaid with a layer of dense to very dense sill till.

As per the "Hydrogeological Investigation" report prepared by EXP (dated April 12, 2019), the hydraulic conductivity of this site ranges from 3.4×10^{-8} to 4.6×10^{-6} m/s. Using Table C2 in TRCA SWM Criteria, Aug 2012, these values correspond to a percolation rate range of 8.9 to 58.5 mm/hr, which suggests good infiltration capacity.

2.5 Significant Natural Features

As the study area comprises an existing developed industrial area, there are no natural heritage features within the study area, including significant vegetation communities or areas that could potentially provide habitat to species at risk.

3. Stormwater Objectives

The proposed development is designed to meet the requirements stipulated from Greater Toronto Airports Authority (GTAA), City of Mississauga (CoM), Ministry of Environment (MECP) Stormwater Management Planning and Design Manual, 2003; and the Toronto and Region Conservation Authority (TRCA) drainage standards.

3.1 Water Quantity and Flood Control

Each approval authority has its own requirements in terms of SWM, particularly in terms of water quantity control (control of peak flows). Various stormwater quantity control requirements are listed below.

- **GTAA Design Standards**: Stormwater quantity control facilities should be designed to attenuate peak discharge rates to either the 100yr pre-development levels or the capacity of the downstream storm sewer system, whichever governs;
- **CoM Design Standards**: Post development storm discharge is to be controlled to the pre-development levels for all storm event (2 through 100 year), with storage up to and including the 100-year storm;

3.2 Water Quality, Erosion and Sediment Control

Stormwater Quality Control: Stormwater is to be treated to Enhanced levels (i.e. 80% Total Suspended Solid removal) as defined in the MECP SWM Planning and Design Manual, 2003;

Erosion and Sediment Control: Since the site does not discharge directly to the receiving watercourse, erosion and sediment control measures are not required.

3.3 Water Balance

Water Balance: the first 5mm of runoff shall be retained on-site and managed in form of infiltration, evapotranspiration or reuse. Low Impact Development (LID) measures such as permeable pavers, infiltration systems, etc. may be considered to achieve this target.

3.4 Site Constraints

As the site comprises existing roadways there are limited opportunities to provide stormwater quantity and quality controls. Particularly as the modifications are to be limited to the roadway and small areas adjacent to the roadway (i.e. minimal modifications to the boulevard.), and any proposed surface works (roadways or sidewalks) are required to be built to the current municipal standard (for example, sidewalks are to be concrete not permeable pavers).

In addition, with the exception of the Alstep extension, no new stormwater infrastructure is proposed; all modifications are to be accommodated by existing CBs, which are to be relocated as per the new curb layout. No new CBs are proposed within the intersection modification zones.

For the Alstep Dr extension, due to the inverts of the existing 750mm diameter private sewer (servicing Subcatchment 206 in Figures 02 and 03) and the existing 600mm on Altep Dr, it is not possible to cross the 750mm sewer to provide a sewer connection for any new CBs within the proposed new ROW. Therefore, any CBs to service the western portion of the Alstep Dr extension would have to be located west of the 750mm private sewer.

It should be noted the proposed works represent a very small percentage of the total site area; therefore, it is expected that any proposed measures will have minimal change to the overall flows offsite.

Figure 03 shows the limits of the proposed works as shaded areas. In addition, the proposed roadworks drawings are also included in the attached documentation.

4. Future Drainage Conditions

4.1 Drainage Patterns

Under proposed conditions, it proposed to extend Alstep Drive to Bramalea Rd. In addition, Bramalea Rd and Menkes Dr are proposed to be widened, and the following intersections are proposed to be modified: Derry Rd E and Menkes Dr/Telford Way, Menkes Dr and Alstep Dr, and the northeast corner of Bramalea Rd and Derry Rd E.

The majority of these modifications are located within existing hardscaped areas. Figure 3 (Post Development Catchment Area Plan) details the proposed new impervious area. Over the entire site (27.53 ha) the new impervious area is only approximately 4298m², or 1.5% of the total site area.

Under proposed conditions, the existing drainage patterns will be maintained, with the exception of existing subcatchment Area 206 on Figure 02, bounded by Alstep Dr, Bramalea Rd and Derry Rd. Under current conditions, this area drains via the existing private 750mm sewer to the Juliet Pond. Under proposed conditions, a portion of this lot will be severed to create the new Alstep Dr extension. As a private sewer cannot be used to drain municipal runoff, the flow from this new area (subcatchments 231 and 232) on Figure 03 will directed to drain to either the existing Alstep Dr storm sewers (area 231) or the existing Bramalea Dr storm sewers (area 232). However, both of these public storm sewers also drain to the Juliet Pond, and therefore there will be no change to the overall drainage pattern.

A by-pass culvert will also be required in Area 207 on Figure 03. As discussed in the Functional Servicing Report (March 02, 2020) and the Stormwater Management Report (May 6, 2020), a proposed 2.4m x 1.5m concrete box culvert at 0.45% slope is proposed to convey upstream flows entering GTAA lands for storm events up to and including the 100-year event, as well as the Regional Storm (Hurricane Hazel). The concrete box will be constructed under the proposed Flight Test Hangar (FTH) building and connect into the existing 1650mm diameter culvert at North Service Road before it ultimately discharges into Juliet stormwater quality and erosion control pond. (Figure 4)

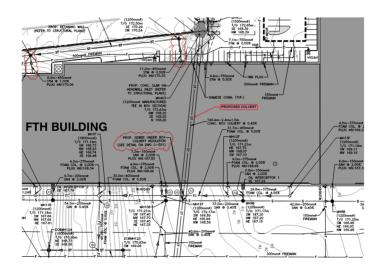


Figure 4: Proposed Box Culvert

The proposed box culvert has been oversized with a safety factor of 2.00 with consideration of blockage from debris and/or accumulation of sediment. The detailed sizing of the proposed 2.40m x 1.50m concrete box culvert has been conducted under a separate memorandum - Concrete box culvert under proposed Flight Test Hangar building, prepared by exp Service dated June 17th, 2019. The key statistics are also summarized below:

100 yr peak flow from external drainage area	= 6.91cms
Regional peak flow from external drainage area	= 3.35 cms
Full flow capacity of proposed 2.40m x1.50m concrete box culvert	= 14.18 cms

As discussed in Section 3.4 above, there are limited opportunities for implementing facilities for the proposed design conditions for managing the impacted study area design elements.

Figure 03 shows the limits of the proposed works as shaded areas. In addition, the proposed roadworks drawings are also included in the attached documentation.

4.2 Outlet Identification

The study area has two outlets: storm flows from Derry Rd near Bramalea (areas 220 and 221 on Figures 02 and 03) drain via existing municipal sewers, which ultimately discharge to Spring Creek (a tributary of Etobicoke Creek) outside of the area of investigation. The remainder of the site drain via existing storm sewers and ultimately discharge to the Juliet Stormwater Quality and Erosion Control Pond, which in turn drains to Etobicoke Creek. Minor flows from the external lands north of the study area drain via the existing Derry Road sewers and major flows form these external lands outlet to the Juliet Pond.

The outlets for the proposed works are to remain the same as per existing conditions. As discussed in Section 4.1 above, although existing Area 206 is to be divided and each portion will drain via different sewers, the ultimate outlet for this site will remain the Juliet Pond.

Please refer to Figure 03 for more information.

Please refer to the list of related background reports in Section 1.2 above. However, these reports do not contain any stormwater design elements (including hydraulic elements) for the proposed design, nor do they include any stormwater management features that have been sized for the study area.

5. Hydrologic and Hydraulic Modelling

5.1 Design Storm

The City of Mississauga Intensity-Duration-Frequency (IDF) data has been used for storm analysis. Using the City IDF rainfall data and the 4-hour duration Chicago-type storm distribution, design flows were generated for the 2, 5, 10, 25, 50 and 100-year design storm events.

The rainfall intensity for the site was calculated using the following equation:

 $I = A / (T + B) ^{C}$

Where;

I = Rainfall intensity in mm/hr,

T = Time of concentration in minutes,

A, B, C = constant parameters (see below)

Table 5-1: City of Mississauga Rainfall IDF Parameters

Storm Return Interval (yr.)	А	В	c
1: 2	610	4.60	0.78
1: 5	820	4.60	0.78
1: 10	1010	4.60	0.78
1: 25	1160	4.60	0.78
1:50	1300	4.70	0.78
1: 100	1450	4.90	0.78

5.2 Hydrologic Modeling

The area of proposed modification is represents less than 10ha and the main focus is the minor flows, therefore peak flows will be determined using the rational formula.

The following table summarizes the results. As shown, the change in flow to Juliet Pond is less than 0.15%, and the change in flow to the existing Derry Rd sewers is less than 2.0%, which is a negligible increase. Refer to Calculation Sheets 1 and 2 in the Appendix.

Condition	Outlet	Total Area Contributing to Outlet (ha)	Weighted Runoff Coefficient	10-yr Peak Flow [cms]	25-yr Peak Flow [cms]	100-yr Peak Flows [cms]
Existing	Juliet Pond	24.94	0.750	6.483	7.446	9.161
Existing	Derry Rd	3.81	0.744	0.983	1.129	1.389
Dropood	Juliet Pond	24.94	0.751	6.491	7.455	9.172
Proposed	Derry Rd	3.81	0.758	1.001	1.150	1.415
% Change	Juliet Pond	0	0.13%	0.12%	0.12%	0.12%
% Change	Derry Rd	0	1.88%	1.90%	1.90%	1.90%

Table 5-2: Existing and Proposed Peak Flow Summary

5.3 Hydraulic Analysis

With the exception of the one culvert crossing Derry Rd (as discussed above in Section 2.3), there are no existing or proposed bridges or other existing stormwater crossing structures within the site.

As the only culvert is outside the area of the proposed modifications and therefore will be unaffected by the changes, and no other structures are present, no hydraulic analysis is required.

6. SWM and LID Features Plan and Design

6.1 Selection of Candidate Features

As discussed in Section 3.4 above, there are limited opportunities for implementing facilities as the site comprises existing roadways and as the modifications are to be limited to the roadway and small portions of the adjacent boulevard, rather than the entire ROW. Further, with the exception of CBs and storm sewers to service the Alstep extension, no new stormwater infrastructure is proposed as all modifications are to be accommodated by relocating existing CBs.

As the change in peak flows is negatable as demonstrated above in Table 5-2, any SWM or LID features would be for quality purposes only. As such, facilities such as SWM ponds, proprietary SWM devices, perforated pipes or superpipe storage are not required.

As the work represents changes to an urban roadway, permeable pavement is not the best choice for this application, especially as sidewalks and roadways are to be built according to municipal standards, which call for concrete

Due to space considerations, bioretention filters, bioswales or infiltration trenches are also not ideal for this application. Oil grit separator (OGS) units are a feasible option for the Alstep Drive extension and can be sized to provide the required 80% TSS removal for the additional impervious areas. The OGS units can be coupled with goss traps on the new road catch basins to provide additional water quality treatment.

6.2 Evaluation of Features

The OGS units have been selected as a potential water quality treatment feature for the Alstep Drive

Goss traps have been selected as a potential LID feature due to their capacity for removal of pollutants, and minor requirements for maintenance and cost as well as impacts on the downstream storm system.

6.3 Impact Assessment of Proposed Design

Goss traps remove particulate from runoff and therefore provide water quality benefits while ensuring minimal impact to the overall function of the existing storm system.

While regular maintenance will be required, conventional CBs without goss traps also require regular maintenance, such as removal of debris in the sump.

6.4 Development of a LID/SWM Plan

Where new CBs are proposed, these CBs should be installed with goss traps to provide water quality benefits. Although they do not provide the same level as more advanced treatment options, they are estimated to have a 7% TSS removal rate.

Refer to Figure 03 for the location of the proposed CBs with goss traps.

6.5 Design of Features

As the City of Mississauga does not have a municipal standard for goss traps, goss traps shall be as per City of Hamilton Standard SEW-304

7. Drainage Plan and Design

7.1 Minor System Design

Using the existing storm sewer design sheets as a basis, storm sewer design sheets for existing and proposed scenarios were prepared using the previous time of concentration where known and the current City of Mississauga 10-year design storm.

As discussed in Section 3.4 above, due to the pipe elevation of the existing private 750mm sewer crossing Alstep Drive, it is not possible to extend the existing 600mm public sewer to service the new extension. In addition, there is insufficient cover to extend a new sewer the full length of the proposed Altep extension from Bramalea Rd, therefore it is proposed to split the storm flows from the proposed Alstep Rd extension to drain to both Astep Drive and Bramalea Rd.

As shown in the attached Calculation Sheet 3, the existing Bramalea Rd storm sewer appears to be undersized under existing conditions. In order to service the new extension and convey the additional flow, it is proposed to twin the existing 450mm sewer. As shown in Calculation Sheet 4 for proposed conditions, this twinned pipe would have adequate conveyance capacity.

Similarly, the length of the existing 600mm Alstep Rd sewer west of the proposed extension is over capacity under current conditions. Therefore, the additional proposed flows would cause this pipe to be further surcharged. Therefore, it is proposed to increase this pipe to a 675mm. Although some other lengths of sewers are surcharged under existing conditions, there is no increase in flow under proposed conditions with the exception of the very last leg immediately upstream of Juliet Pond, which has a negligible increase in flow (1% change).

For the Derry Rd sewer, as shown Calculation Sheet 3 and 4, the proposed works represent a negligible increase to the pipe flows, with an increase of 0.012cms.

7.2 Major System Design

Given that the proposed modifications represent a only a minor change to the impervious areas, there are no existing flooding concerns and, as demonstrated above, the there is no significant change to the overall flows, it is assumed that the existing major overland routes are adequate for the proposed works.

8. Approval and Review Requirements

The City of Mississauga requires and Environmental Compliance Approval (ECA) application for the proposed 675mm storm sewer from the Alstep Extension to the City's system.

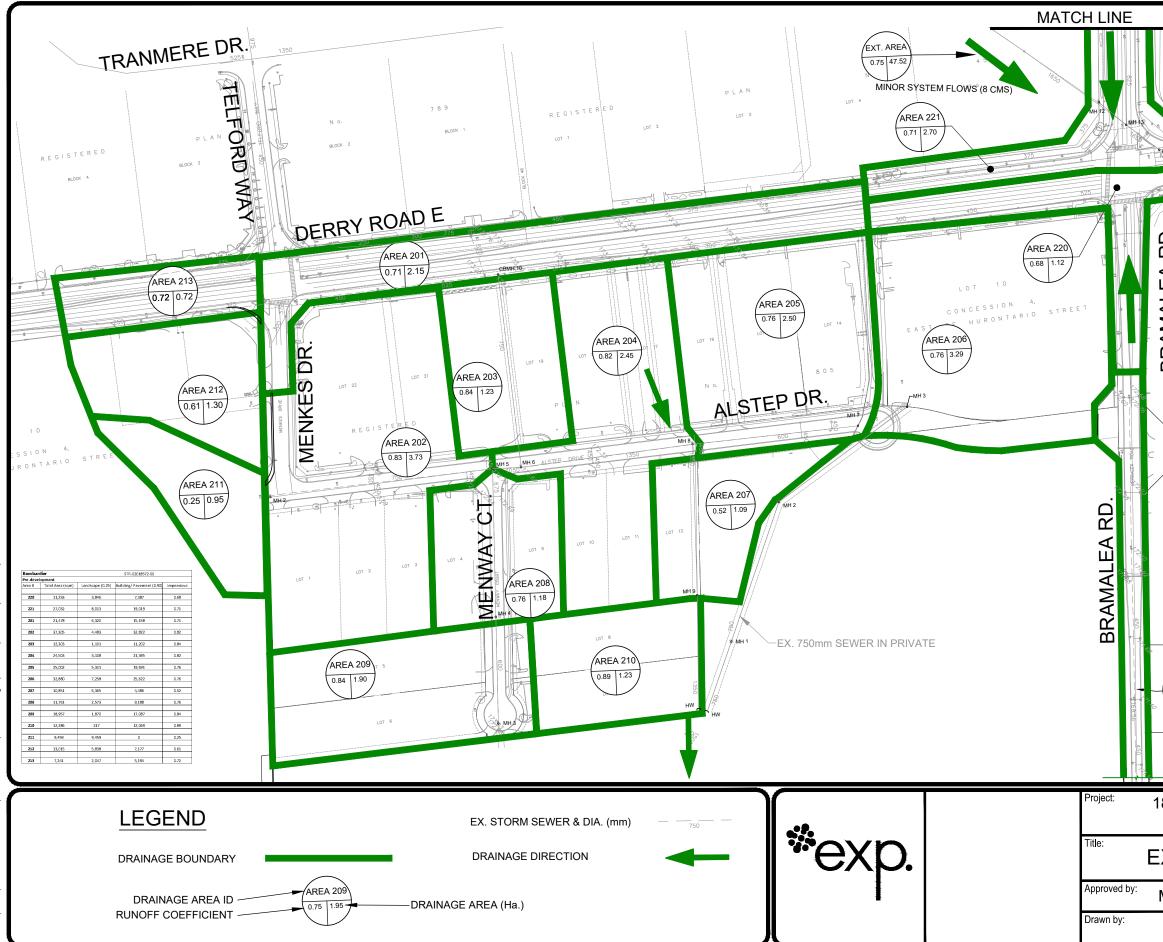
In addition, although this site is part of a TRCA regulated watershed, it does not directly drain directly to Etobicoke Creek nor Spring Creek and is not located within the regulated area and therefore TRCA approval is not required.

Any proposed road catch basins and storm manholes within Storm Drainage Area 232 will be maintained by the GTAA as required by the City of Mississauga. GTAA approval will be required for modifications to their storm drainage system including any additional proposed catchment areas (Storm Drainage Area 232)

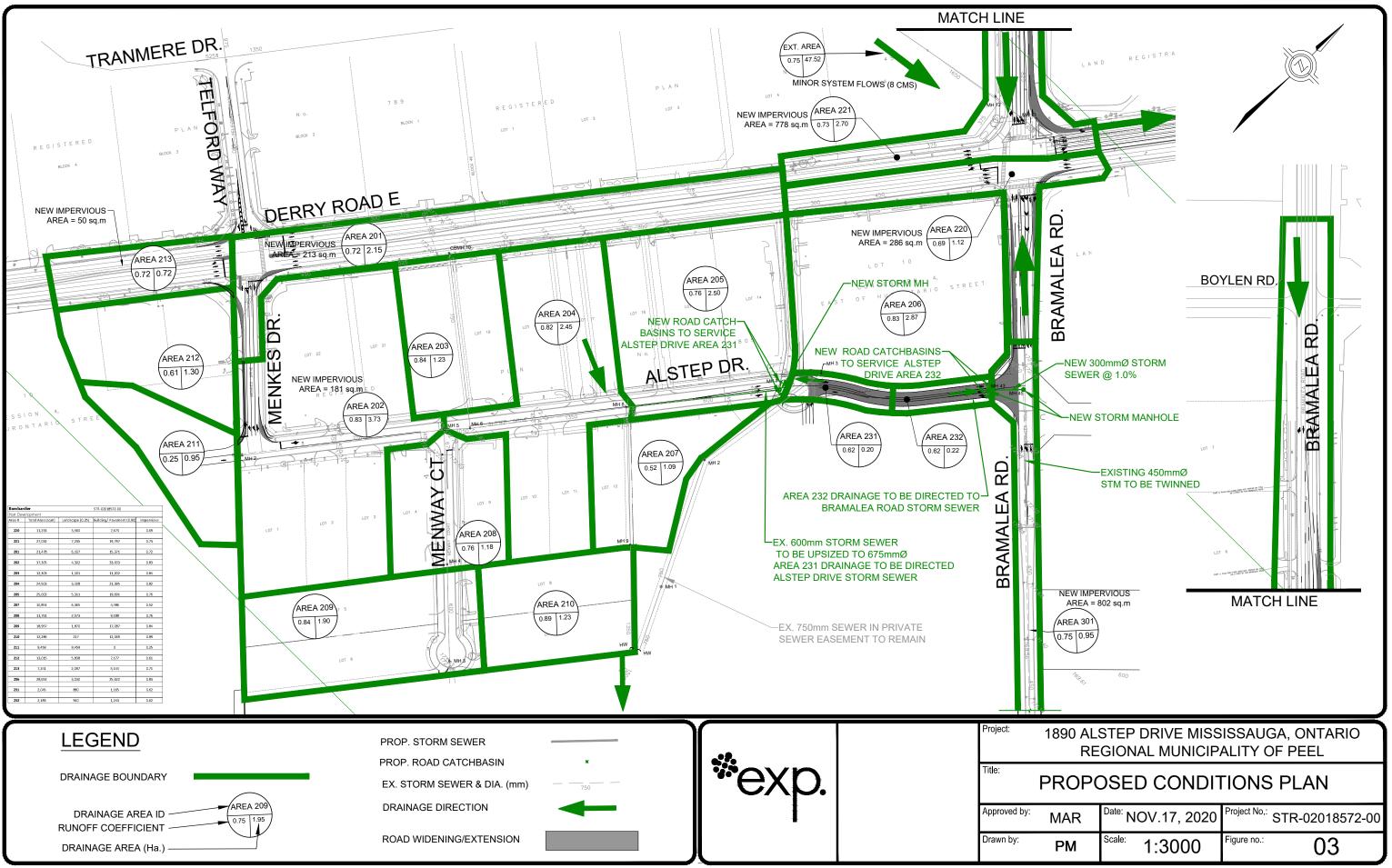
9. Future Design Recommendations

At the detailed design stage, it is recommended to confirm that the total increase in impervious area will not represent a significant change to the overall flows. Should more area be considered for the road improvements, more intensive LID options may be considered as well as confirmation that the proposed sewer system design is the optimum solution.

EXP Services Inc.


Project Number: STR – 2018572-00 Date: June 11, 2021

APPENDICES


Path: E:\MRK\STR-02018572-00\60 Execution\69 EA Consultation\Drainage\Report\2021-06-09 for submission\2021-02-09-BombardierSWM-EA-v4 for submission.docx

APPENDIX A

	D REGISTRA	
BRAMALEA RD.		BOYLEN RD
		DT 7
NEW IMPE AREA 301 0.75 0.95		MATCH LINE
		SSISSAUGA, ONTARIO FIPALITY OF PEEL
EXISTI	NG CONDIT	IONS PLAN
MAR	Date: NOV.17, 202	
PM	^{Scale:} 1:3000	Figure no.: 02

APPENDIX B

<u>PROJECT NO. : STR – 2018572-00</u> PROJECT NAME. :Bombardier SWM for Class EA Date: June. 2021

CALCULATION Sheet :1a

Q = C * i * A / 360 cms

C = Runoff Coefficient

i = Rainfall intensity (mm/hr)

A = Watershed area (ha)

[City of Mississauga IDF]

Time of concentration, T_c 10 min

$\label{eq:interm} \begin{array}{ll} \mbox{IDF Eqn}: & i = A \mbox{ / } (T + \mbox{ C})^{\wedge} \mbox{ B} \\ \mbox{A \& C parameter for IDF Curve} \end{array}$

Year	A =	B=	C=
2	610	4.60	0.780
5	820	4.60	0.780
10	1010	4.60	0.780
25	1160	4.60	0.780
50	1300	4.70	0.780
100	1450	4.90	0.780

Pre Development Peak Flows to Juliet Pond:

YEAR	Rainfall	Flows
	mm/hr	m3/sec
2	75.36	3.835
5	101.30	5.155
10	124.77	6.350
25	143.31	7.293
50	159.75	8.130
100	176.31	8.973

<u>PROJECT NO. : STR – 2018572-00</u> <u>PROJECT NAME. :Bombardier SWM for Class EA</u> <u>Date: June, 2021</u>

CALCULATION Sheet :1b

Pre-Development Run off Coefficient & Peak Flow Ex Derry Rd Sewers (does not inluclude external area)

D	rainage Area	3.82	ha	[See: FIGURE 02]
N	eighted Runoff Coefficent, C	0.689		

Run off Calculation (using Rational Method):

Q = C * i * A / 360 cms

- C = Runoff Coefficient
- i = Rainfall intensity (mm/hr)
- A = Watershed area (ha)

Time of concentration, T_c

10 min

[City of Mississauga IDF]

IDF Eqn : $i = A / (T + C)^{A} B$

A & C parameter for ID			
Year	A =	B=	C=
2	610	4.60	0.780
5	820	4.60	0.780
10	1010	4.60	0.780
25	1160	4.60	0.780
50	1300	4.70	0.780
100	1450	4.90	0.780

Pre Development Peak Flows to Derry Rd:

YEAR	Rainfall	Flows
	mm/hr	m3/sec
2	75.36	0.5508
5	101.30	0.7404
10	124.77	0.9120
25	143.31	1.0474
50	159.75	1.1676
100	176.31	1.2886

PROJECT NO. : STR – 2018572-00 PROJECT NAME. :Bombardier SWM for Class EA Date: 2021-03-01

CALCULATION Sheet :1c

Pre-Development Run off Coefficient & Peak Flow						
Juliet Pond Oulet (does not inluclude external area)						
		-				
Drainage Area 24.67 ha [See: FIGURE 02]						
Weighted Runoff Coefficent, C 0.743						

Run off Calculation (using Rational Method):

Q = C * i * A / 360 cms

C = Runoff Coefficient

i = Rainfall intensity (mm/hr) Region of Peel

A = Watershed area (ha)

Time of concentration, T_c 10 min

IDF Eqn : $i = A / (T + C)^{A} B$

A & C parameter for IDF	- Curve		
Year	A =	B=	C=
2	1070	7.85	0.876
5	1593	11.00	0.879
10	2221	12.00	0.908
25	3158	15.00	0.934
50	3886	16.00	0.950
100	4688	17.00	0.962

Pre Development Peak Flows to Juliet Pond:

YEAR	Rainfall	Region Flows
	mm/hr	m3/sec
2	85.72	4.362
5	109.68	5.581
10	134.16	6.827
25	156.47	7.963
50	176.19	8.966
100	196.54	10.002

<u>PROJECT NO. : STR – 2018572-00</u> <u>PROJECT NAME. :Bombardier SWM for Class EA</u> <u>Date: 2021-03-01</u>

CALCULATION Sheet :1d

Pre-Development Run off Coefficient & Peak Flow Ex Derry Rd Sewers (does not inluclude external area)

[See: FIGURE 02]

Region of Peel

Drainage Area	3.82	ha
Weighted Runoff Coefficent, C	0.689	

Run off Calculation (using Rational Method):

Q = C * i * A / 360 cms

- C = Runoff Coefficient
- i = Rainfall intensity (mm/hr)
- A = Watershed area (ha)

Time of concentration, T_c 10 min

IDF Eqn :

 $i = A / (T + C)^{A} B$

A & C parameter for ID	F Curve		
Year	A =	B=	C=
2	1070	7.85	0.876
5	1593	11.00	0.879
10	2221	12.00	0.908
25	3158	15.00	0.934
50	3886	16.00	0.950
100	4688	17.00	0.962

Pre Development Peak Flows to Derry Rd:

YEAR	Rainfall	Region Flows
	mm/hr	m3/sec
2	85.72	0.6265
5	109.68	0.8016
10	134.16	0.9806
25	156.47	1.1436
50	176.19	1.2878
100	196.54	1.4365

<u>PROJECT NO. : STR – 2018572-00</u> <u>PROJECT NAME. :Bombardier SWM for Class EA</u> <u>Date: June, 2021</u>

CALCULATION Sheet :2a

Post-Development Run off Coefficient & Peak Flow Juliet Pond Oulet (does not inluclude external area)

Drainage Area	24.67	ha	[See: FIGURE 03]
Weighted Runoff Coefficent, C	0.755		

Run off Calculation (using Rational Method):

Q = C * i * A / 360 cms

- C = Runoff Coefficient
- i = Rainfall intensity (mm/hr)
- A = Watershed area (ha)

Time of concentration, T_c

10 min

[City of Mississauga IDF]

IDF Eqn : $i = A / (T + C)^{A} B$

A & C parameter for ID	F Curve		
Year	A =	B=	C=
2	610	4.60	0.780
5	820	4.60	0.780
10	1010	4.60	0.780
25	1160	4.60	0.780
50	1300	4.70	0.780
100	1450	4.90	0.780

Post Development Peak Flows to Juliet Pond:

YEAR	Rainfall	Flows
	mm/hr	m3/sec
2	75.36	3.9002
5	101.30	5.2429
10	124.77	6.4577
25	143.31	7.4168
50	159.75	8.2678
100	176.31	9.1251

PROJECT NO. : STR - 2018572-00 PROJECT NAME. :Bombardier SWM for Class EA Date: June, 2021

CALCULATION Sheet :2b

Post-Development Run off Coefficient & Peak Flow Ex Derry Rd Sewers (does not inluclude external area)

Drainage Area	3.82	ha	[See: FIGURE 03]
Weighted Runoff Coefficent, C	0.702		

Run off Calculation (using Rational Method):

Q = C * i * A / 360 cms

C = Runoff Coefficient

i = Rainfall intensity (mm/hr)

[City of Mississauga IDF]

A = Watershed area (ha)

Time of concentration, T_c 10 min

IDF Eqn :

 $i = A / (T + C)^{A} B$ A & C parameter for IDE Curve

A & C parameter for ID	F Curve		
Year	A =	B=	C=
2	610	4.60	0.780
5	820	4.60	0.780
10	1010	4.60	0.780
25	1160	4.60	0.780
50	1300	4.70	0.780
100	1450	4.90	0.780

Post Development Peak Flows to Derry Rd

YEAR	Rainfall	Flows	
	mm/hr	m3/sec	L/Sec
2	75.36	0.561	561.13
5	101.30	0.754	754.31
10	124.77	0.929	929.09
25	143.31	1.067	1067.07
50	159.75	1.190	1189.50
100	176.31	1.313	1312.84

<u>PROJECT NO. : STR – 2018572-00</u> <u>PROJECT NAME. :Bombardier SWM for Class EA</u> <u>Date: 2021-03-01</u>

CALCULATION Sheet :2c

Post-Development Run off Coefficient & Peak Flow	
Juliet Pond Oulet (does not inluclude external area)	

[See: FIGURE 03]

Drainage Area	24.67	ha
Weighted Runoff Coefficent, C	0.755	

Run off Calculation (using Rational Method):

Q = C * i * A / 360 cms

- C = Runoff Coefficient
- i = Rainfall intensity (mm/hr)
- A = Watershed area (ha)

Time of concentration, T_c

<mark>10</mark>min

Region of Peel

IDF Eqn :

 $i = A / (T + C)^{A} B$

A & C parameter for ID			
Year	A =	B=	C=
2	1070	7.85	0.876
5	1593	11.00	0.879
10	2221	12.00	0.908
25	3158	15.00	0.934
50	3886	16.00	0.950
100	4688	17.00	0.962

Post Development Peak Flows to Juliet Pond:

YEAR	Rainfall	Flows
	mm/hr	m3/sec
2	85.72	4.4364
5	109.68	5.6764
10	134.16	6.9436
25	156.47	8.0982
50	176.19	9.1189
100	196.54	10.1718

PROJECT NO. : STR – 2018572-00 PROJECT NAME. :Bombardier SWM for Class EA Date: 2021-03-01

CALCULATION Sheet :2d

Post-Development Run off Coefficient & Peak Flow Ex Derry Rd Sewers (does not inluclude external area)

Drainage Area	3.82	ha
Weighted Runoff Coefficent, C	0.702	

Run off Calculation (using Rational Method):

Q = C * i * A / 360 cms

C = Runoff Coefficient

IDF Ean :

i = Rainfall intensity (mm/hr)

Region of Peel

min

[See: FIGURE 03]

A = Watershed area (ha)

Time of concentration, T_c

 $i = A / (T + C)^{A} B$

10

	(-	-, -	
A & C parameter for ID	F Curve		
Year	A =	B=	C=
2	1070	7.85	0.876
5	1593	11.00	0.879
10	2221	12.00	0.908
25	3158	15.00	0.934
50	3886	16.00	0.950
100	4688	17.00	0.962

Post Development Peak Flows to Derry Rd

YEAR	Rainfall	Flows						
	mm/hr	m3/sec	L/Sec					
2	85.72	0.638	638.27					
5	109.68	0.817	816.67					
10	134.16	0.999	998.98					
25	156.47	1.165	1165.10					
50	176.19	1.312	1311.94					
100	196.54	1.463	1463.43					

PROJECT NO. : STR - 2018572-00

PROJECT NAME. :Bombardier SWM for Class EA Date: June, 2021

MINOR SYSTEM DESIGN - EXISTING CONDITION

Design Storm

10 Yr

Q=0.0028*C*I*A (cms)	[City of Missis	sauga IDF] - 10Yr
C : RUNOFF COEFFICIENT	A =	1010.00
I : RAINFALL INTENSITY	B =	4.60
I=A / (T+B)^ ^C	C =	0.78
A : AREA (ha)		

STREETS	AREA No.	MAINTE			INCREMEN	г	то	TAL		FLOW TIME (min)		1	TOTAL	S	D	D LENGTH	V FULL	Q FULL	% Full	Sec. Time
SIRCEIS	AREA NO.	FROM	то	A	с	СА	Ατ	САт	Tcf	Tci	Tc	(mm/h)	(cms)	(%)	(mm)	(m)	(m/s)	(cms)		(min)
		FROW	10	A	С С	CA	AT	CAT	TCI	10	10	((((()))))	(cms)	(%)	(1111)	(11)	(11/5)	(cins)		(1111)
City Sewer to HW																				
Alstep Dr	211	Stub	2	0.95	0.25	0.24	0.95	0.24	15.00		15.0	99.17	0.066	0.80	600	2.5	1.94	0.549	12.0%	0.00
"	202	2	5	3.73	0.82	3.06	4.68	3.30			15.0	99.17	0.915	0.78	750	178.0	2.23	0.983	93.1%	1.33
		· · · ·																		
Menway Court	209	3	4	1.95	0.84	1.64	1.95	1.64	15.00		15.0	99.17	0.455	0.40	600	81.0	1.37	0.388	117.1%	0.98
"	208	4	5	1.18	0.76	0.90	3.13	2.53			16.0	95.45	0.677	0.46	675	120.0	1.59	0.570	118.8%	1.26
Alstep Dr		5	6			0.00	7.81	5.83			17.2	91.14	1.488	0.34	1050	23.0	1.83	1.588	93.7%	0.21
Easement Lot 19	201	CBMH 10	6	2.15	0.71	3.87	5.40	3.87			12.6	109.80	1.190	0.52	750	153.0	1.82	0.803	148.3%	1.40
	213			0.72	0.72															
	212			1.30	0.61															
	203			1.23	0.84															
Alstep Dr	204	6	8	2.45	0.82	2.01	15.66	11.71			17.4	90.47	2.967	0.30	1350	140.0	2.04	2.923	101.5%	1.14
Alstep Dr	205	7	8	2.50	0.76	1.90	2.50	1.90	15.00		15.0	99.17	0.528	0.55	600	110.0	1.61	0.455	115.9%	1.14
Alstep Dr	207	8	9	1.09	0.52	0.57	19.25	14.18			18.6	86.97	3.453	0.40	1350	120.0	2.36	3.376	102.3%	0.85
Alstep Dr	210	9	HW	1.23	0.89	1.09	20.48	15.27			19.4	84.57	3.617	0.40	1350	89.0	2.36	3.376	107.1%	0.63
Private Sewer to HV							1	1	1	1		1	1							
Alstep Dr/Easement	206	3	2	3.29	0.75	2.47	3.29	2.47			15.00	99.17	0.685	0.35	750	127.0	1.49	0.659	104.0%	1.42
		2	1			0.00	3.29	2.47			16.4	93.90	0.649	0.35	750	120.0	1.49	0.659	98.5%	1.34
		1	HW			0.00	3.29	2.47			17.8	89.48	0.618	0.35	750	58.0	1.49	0.659	93.9%	0.65
Derry Rd Sewer N			10	17.50		05.04	17.50	1 05 04						0.70	1050					
Easement	External	12	13	47.52	0.75	35.64	47.52	35.64			22.00	78.15	7.798	0.76	1650	29.0	3.72	7.946	98.1%	0.13
Bramalea Rd	221	13	14	2.70	0.71	1.92	50.22	37.56			22.13	77.85	8.187	0.76	1650	40.0	3.72	7.946	103.0%	0.18
Derry Rd Sewer S	000	00	01	1.10	0.68	0.70	4.40	0.70	1		40.00	404.77	0.000	0.40	505		4.00	0.070	07.00/	
Bramalea Rd Bramalea Rd Sewer	220	22	21	1.12	0.08	0.76	1.12	0.76			10.00	124.77	0.266	0.40	525	111.4	1.26	0.272	97.8%	1.48
Bramalea Rd	301	43	45	0.95	0.75	0.71	0.95	0.71	1		10.00	124.77	0.249	0.30	450	118.0	0.98	0.156	159.4%	2.00
Bramalea Rd	301	43	45	0.95	0.75	0.71	0.95	0.71			10.00	124.77	0.249	0.30	450	118.0	0.98	U.156	159.4%	2.00

Sewer Design

n= 0.013 for Manning's Equation Roughness=

Velocity Limits= V_{full} min = 0.8 V_{full} max = 6

m/s m/s

PROJECT NO. : STR - 2018572-00

PROJECT NAME. :Bombardier SWM for Class EA Date: June, 2021

MINOR SYSTEM DESIGN - PROPOSED CONDITION

Design Storm

10 Yr

Q=0.0028*C*I*A (cms)	[City of Missis	sauga IDF] - 10Yr
C : RUNOFF COEFFICIENT	A =	1010.00
I : RAINFALL INTENSITY	B =	4.60
I=A / (T+B)^ ^C	C =	0.78
A : AREA (ha)		

STREETS	AREA No.	MAINTE HO			INCREMEN	Г	TO	TAL		FLOW TIME (min)		I	TOTAL Q	S	D	LENGTH	V FULL	Q FULL	% Full	Sec. Time
		FROM	то	A	С	CA	AT	CAT	Tcf	Tci	Tc	(mm/h)	(cms)	(%)	(mm)	(m)	(m/s)	(cms)		(min)
City Sewer to HW																				
Alstep Dr	211	Stub	2	0.95	0.25	0.24	0.95	0.24	15.00		15.0	99.17	0.066	0.80	600	2.5	1.94	0.549	12.0%	0.00
"	202	2	5	3.73	0.83	3.10	4.68	3.33			15.0	99.17	0.926	0.78	750	178.0	2.23	0.983	94.1%	1.33
Menway Court	209	3	4	1.90	0.84	1.60	1.90	1.60	15.00		15.0	99.17	0.443	0.40	600	81.0	1.37	0.388	114.1%	0.98
	208	4	5	1.18	0.76	0.90	3.08	2.49			16.0	95.45	0.666	0.46	675	120.0	1.59	0.570	116.9%	1.26
Alstep Dr		5	6			0.00	7.76	5.83			17.2	91.14	1.487	0.34	1050	23.0	1.83	1.588	93.7%	0.21
	004	00141140	0	0.45	0.70	0.00	5.40	0.00			40.0	100.00	4.405	0.50	750	450.0	4.00	0.000	4.40,000	1.10
Easement Lot 19	201 213	CBMH 10	6	2.15	0.72	3.89	5.40	3.89			12.6	109.80	1.195	0.52	750	153.0	1.82	0.803	148.8%	1.40
	213			0.72	0.71															
	212			1.30	0.61															
Alatan Da	203	6	8	2.45	0.84	2.01	15.61	11.72			17.4	90.47	2.969	0.30	4050	140.0	2.04	2.923	101.6%	1.14
Alstep Dr	204	0	8	2.40	0.82	2.01	10.01	11.72			17.4	90.47	2.969	0.30	1350	140.0	2.04	2.923	101.6%	1.14
Alstep Dr	205, 231	7	8	2.72	0.75	2.04	2.72	2.04	15.00		15.0	99.17	0.566	0.55	675	132.0	1.74	0.623	90.8%	1.26
Aistep Di	205, 251	1	0	2.12	0.75	2.04	2.12	2.04	15.00		15.0	99.17	0.000	0.55	0/5	132.0	1.74	0.023	90.0%	1.20
Alstep Dr	207	8	9	1.09	0.52	0.57	19.42	14.33			18.6	86.97	3.489	0.40	1350	120.0	2.36	3.376	103.4%	0.85
Alstep Dr	210	9	HW	1.23	0.89	1.09	20.65	15.42			19.4	84.57	3.652	0.40	1350	89.0	2.36	3.376	108.2%	0.63
Private Sewer to HV	-			1.20	0.00	1100	20.00	10.12			10.1	01.01	0.002	0.10	1000	00.0	2.00	0.010	100.270	0.00
Alstep Dr/Easement	206	3	2	2.87	0.83	2.38	2.87	2.38			15.00	99.17	0.661	0.35	750	127.0	1.49	0.659	100.4%	1.42
		2	1			0.00	2.87	2.38			16.4	93.90	0.626	0.35	750	120.0	1.49	0.659	95.1%	1.34
		1	HW			0.00	2.87	2.38			17.8	89.48	0.597	0.35	750	58.0	1.49	0.659	90.6%	0.65
Derry Rd Sewer N																				
Easement	External	12	13	47.52	0.75	35.64	47.52	35.64			22.00	78.15	7.798	0.76	1650	29.0	3.72	7.946	98.1%	0.13
Bramalea Rd	221	13	14	2.70	0.73	1.97	50.22	37.61			22.13	77.85	8.198	0.76	1650	40.0	3.72	7.946	103.2%	0.18
Derry Rd Sewer S																				
Bramalea Rd	220	22	21	1.12	0.69	0.77	1.12	0.77			10.00	124.77	0.270	0.40	525	111.4	1.26	0.272	99.3%	1.48
Bramalea Rd Sewer																				
Alstep Dr	232	43	45	0.22	0.62	0.14	0.22	0.14			10.00	124.77	0.048	1.00	300	28.9	1.37	0.097	49.3%	0.35
Bramalea Rd	301	43	45	0.95	0.75	0.71	1.17	0.85			10.4	122.48	0.291	0.30	twin-450	118.0	1.96	0.312	93.2%	1.00

Sewer Design

n= 0.013 for Manning's Equation Roughness= Velocity Limits= V_{full} min = 0.8

V_{full} max = 6

m/s m/s

PROJECT NO. : STR – 2018572-00 PROJECT NAME. :Bombardier SWM for Class EA Date: 2021-03-01

MINOR SYSTEM DESIGN - EXISTING CONDITION

Design Storm

<mark>10</mark> Yr

		MAINTE	NANCE		INCREMEN'	Г	TO	TAL		FLOW TIME		I	TOTAL	S	D	LENGTH	V	Q	% Full	Sec.
STREETS	AREA No.	HO								(min)			Q				FULL	FULL		Time
		FROM	то	A	С	CA	A _T	CAT	Tcf	Tci	Tc	(mm/h)	(cms)	(%)	(mm)	(m)	(m/s)	(cms)		(min)
																				i
City Sewer to HW							•	•					•							
Alstep Dr	211	Stub	2	0.95	0.25	0.24	0.95	0.24	10.00		10.0	134.16	0.089	0.80	600	2.5	1.94	0.549	16.2%	0.02
"	202	2	5	3.73	0.82	3.06	4.68	3.30			10.0	134.04	1.237	0.78	750	178.0	2.23	0.983	125.8%	1.33
Menway Court	209	3	4	1.90	0.84	1.60	1.90	1.60	10.00		10.0	134.16	0.600	0.40	600	81.0	1.37	0.388	154.4%	0.98
"	208	4	5	1.18	0.76	0.90	3.08	2.49			11.0	128.94	0.900	0.46	675	120.0	1.59	0.570	157.9%	1.26
Alstep Dr		5	6			0.00	7.76	5.79			12.2	122.86	1.991	0.34	1050	23.0	1.83	1.588	125.4%	0.21
Easement Lot 19	201	CBMH 10	6	2.15	0.71	3.87	5.40	3.87			12.6	121.22	1.314	0.52	750	153.0	1.82	0.803	163.7%	1.40
	213			0.72	0.72															1
	212			1.30	0.61															
	203			1.23	0.84															
Alstep Dr	204	6	8	2.45	0.82	2.01	15.61	11.67			14.0	115.27	3.766	0.30	1350	140.0	2.04	2.923	128.8%	1.14
Alstep Dr	205	7	8	2.50	0.76	1.90	2.50	1.90	10.00		10.0	134.16	0.714	0.55	600	110.0	1.61	0.455	156.7%	1.14
Alstep Dr	207	8	9	1.09	0.52	0.57	19.20	14.14			15.1	110.85	4.388	0.40	1350	120.0	2.36	3.376	130.0%	0.85
Alstep Dr	210	9	HW	1.23	0.89	1.09	20.43	15.23			16.0	107.80	4.597	0.40	1350	89.0	2.36	3.376	136.2%	0.63
Private Sewer to HW							•	•					•							
Alstep Dr/Easement	206	3	2	3.29	0.76	2.50	3.29	2.50			10.00	134.16	0.939	0.35	750	127.0	1.49	0.659	142.6%	1.42
		2	1			0.00	3.29	2.50			11.4	126.76	0.887	0.35	750	120.0	1.49	0.659	134.7%	1.34
		1	HW			0.00	3.29	2.50			12.8	120.50	0.844	0.35	750	58.0	1.49	0.659	128.1%	0.65
Derry Rd Sewer N	-																			
Easement	External	12	13	47.52	0.75	35.64	47.52	35.64			22.00	90.36	9.017	0.76	1650	29.0	3.72	7.946	113.5%	0.13
Bramalea Rd	221	13	14	2.70	0.68	1.84	50.22	37.48			22.13	90.05	9.449	0.76	1650	40.0	3.72	7.946	118.9%	0.18
Derry Rd Sewer S																				
Bramalea Rd	220	22	21	1.12	0.68	0.76	1.12	0.76			10.00	134.16	0.286	0.40	525	111.4	1.26	0.272	105.2%	1.48
Bramalea Rd Sewer																				
Bramalea Rd	301	43	45	0.95	0.75	0.71	0.95	0.71			10.00	134.16	0.268	0.30	450	118.0	0.98	0.156	171.4%	2.00

Sewer Design

Roughness=

Velocity Limits= V_{full} min = 0.8

n= 0.013

V_{full} max = 6

for Manning's Equation

m/s

m/s

PROJECT NO. : STR - 2018572-00 PROJECT NAME. : Bombardier SWM for Class EA Date: 2021-03-01

MINOR SYSTEM DESIGN - PROPOSED CONDITION

Design Storm

<mark>10</mark> Yr

Q=0.0028*C*I*A (cms) [Region of Peel IDF] - 10Yr C : RUNOFF COEFFICIENT A = 2221.00 I : RAINFALL INTENSITY B = 12.00 I=A / (T+B)^ ^C C = 0.91 A : AREA (ha)

0705570	AREA No.	MAINTE			INCREMEN	Г	TO	TAL		FLOW TIME		I	TOTAL	S	D	LENGTH	V FULL	Q FULL	% Full	Sec. Time
STREETS	AREA NO.	FROM	TO	Α	с	CA	A _T	CAT	Tcf	(min) Tci	Tc	(mm/h)	Q (cms)	(%)	(mm)	(m)	FULL (m/s)	FULL (cms)		(min)
		T KOM	10	^	Ū	~~	-T	UAT	101	10	10	(1111/011)	(cms)	(78)	(1111)	(11)	(11/3)	(cilis)		(11111)
City Sewer to HW																				
Alstep Dr	211	Stub	2	0.95	0.25	0.24	0.95	0.24	10.00		10.0	134.16	0.089	0.80	600	2.5	1.94	0.549	16.2%	0.02
"	202	2	5	3.73	0.83	3.10	4.68	3.33			10.0	134.04	1.251	0.78	750	178.0	2.23	0.983	127.2%	1.33
Menway Court	209	3	4	1.90	0.84	1.60	1.90	1.60	10.00		10.0	134.16	0.600	0.40	600	81.0	1.37	0.388	154.4%	0.98
"	208	4	5	1.18	0.76	0.90	3.08	2.49			11.0	128.94	0.900	0.46	675	120.0	1.59	0.570	157.9%	1.26
Alstep Dr		5	6			0.00	7.76	5.83			12.2	122.86	2.004	0.34	1050	23.0	1.83	1.588	126.2%	0.21
Easement Lot 19	201	CBMH 10	6	2.15	0.72	3.89	5.40	3.89			12.6	121.22	1.319	0.52	750	153.0	1.82	0.803	164.3%	1.40
	213			0.72	0.71															
	212			1.30	0.61															
	203			1.23	0.84															
Alstep Dr	204	6	8	2.45	0.82	2.01	15.61	11.72			14.0	115.27	3.783	0.30	1350	140.0	2.04	2.923	129.4%	1.14
	005 004	7	0	0.70	0.75	0.04	0.70	0.04	10.00		10.0	101.10	0 700	0.55	075	400.0	4.74	0.000	400.00/	1.00
Alstep Dr	205, 231	/	8	2.72	0.75	2.04	2.72	2.04	10.00		10.0	134.16	0.766	0.55	675	132.0	1.74	0.623	122.9%	1.26
Alstep Dr	207	8	9	1.09	0.52	0.57	19.42	14.33			15.1	110.85	4.447	0.40	1350	120.0	2.36	3.376	131.7%	0.85
Alstep Dr	210	9	HW	1.03	0.89	1.09	20.65	15.42			16.0	107.80	4.655	0.40	1350	89.0	2.36	3.376	137.9%	0.63
Private Sewer to HW	-	3	1100	1.25	0.03	1.05	20.03	13.42			10.0	107.00	4.000	0.40	1550	03.0	2.50	5.570	137.370	0.05
Alstep Dr/Easement	206	3	2	2.87	0.83	2.38	2.87	2.38			10.00	134.16	0.895	0.35	750	127.0	1.49	0.659	135.9%	1.42
		2	1			0.00	2.87	2.38			11.4	126.76	0.845	0.35	750	120.0	1.49	0.659	128.4%	1.34
		1	HW			0.00	2.87	2.38			12.8	120.50	0.804	0.35	750	58.0	1.49	0.659	122.0%	0.65
Derry Rd Sewer N																				
Easement	External	12	13	47.52	0.75	35.64	47.52	35.64			22.00	90.36	9.017	0.76	1650	29.0	3.72	7.946	113.5%	0.13
Bramalea Rd	221	13	14	2.70	0.73	1.97	50.22	37.61			22.13	90.05	9.483	0.76	1650	40.0	3.72	7.946	119.3%	0.18
Derry Rd Sewer S																				
Bramalea Rd	220	22	21	1.12	0.69	0.77	1.12	0.77			10.00	134.16	0.290	0.40	525	111.4	1.26	0.272	106.7%	1.48
Bramalea Rd Sewer		-																		
Alstep Dr	232	43	45	0.22	0.62	0.14	0.22	0.14			10.00	134.16	0.051	1.00	300	28.9	1.37	0.097	53.0%	0.35
Bramalea Rd	301	43	45	0.95	0.75	0.71	1.17	0.85			10.4	132.24	0.314	0.30	twin-450	118.0	1.96	0.312	100.6%	1.00

Roughness= n= 0.013 Velocity Limits= V_{full} min = 0.8

Sewer Design

m/s

for Manning's Equation

V_{full} max = 6 m/s

IDF for: TORONTO INTL A ID:6158731

Station Info	IDF historical data ?	IDF under dimate change ?		
Climate Moo	del Selection Scenario	RCP 2.6 2 Scenario RCP 4.5 2	Scenario RCP 8.5 👔	Comparison Graphs 👔
Tables	Plots Interpolation Ec	uations Box Plot - Uncertainty 👔		

Total precipitation amounts presented in mm and precipitation intensity rates presented in mm/h for different return periods (T) presented in years

○ Total PPT (mm) ● Intensity rates (mm/h)

T (years)	2	5	10	20	25	50	100
5 min	118.58	159.51	185.91	212.72	220.06	242.07	265.32
10 min	87.47	117.89	136.78	154.75	160.18	174.70	189.90
15 min	72.22	97.91	113.57	128.00	132.40	144.19	155.83
30 min	47.46	65.52	76.84	87.74	90.92	99.76	109.01
1 h	27.26	38.11	45.33	52.80	54.92	61.31	68.01
2 h	15.55	22.01	26.67	31.81	33.41	38.32	44.06
6 h	6.62	9.29	11.38	13.83	14.63	17.42	20.48
12 h	3.80	5.16	6.29	7.67	8.14	9.82	11.78
24 h	2.17	2.91	3.53	4.28	4.53	5.44	6.50

Climate Change IDF data taken from IDF CC Tool developed by University of Western Ontario and the Canadian Water Institute

PROJECT NO. : STR - 2018572-00

PROJECT NAME. :Bombardier SWM for Class EA Date: 2021-03-01

MINOR SYSTEM DESIGN - PROPOSED CONDITION

Design Storm

10 Yr

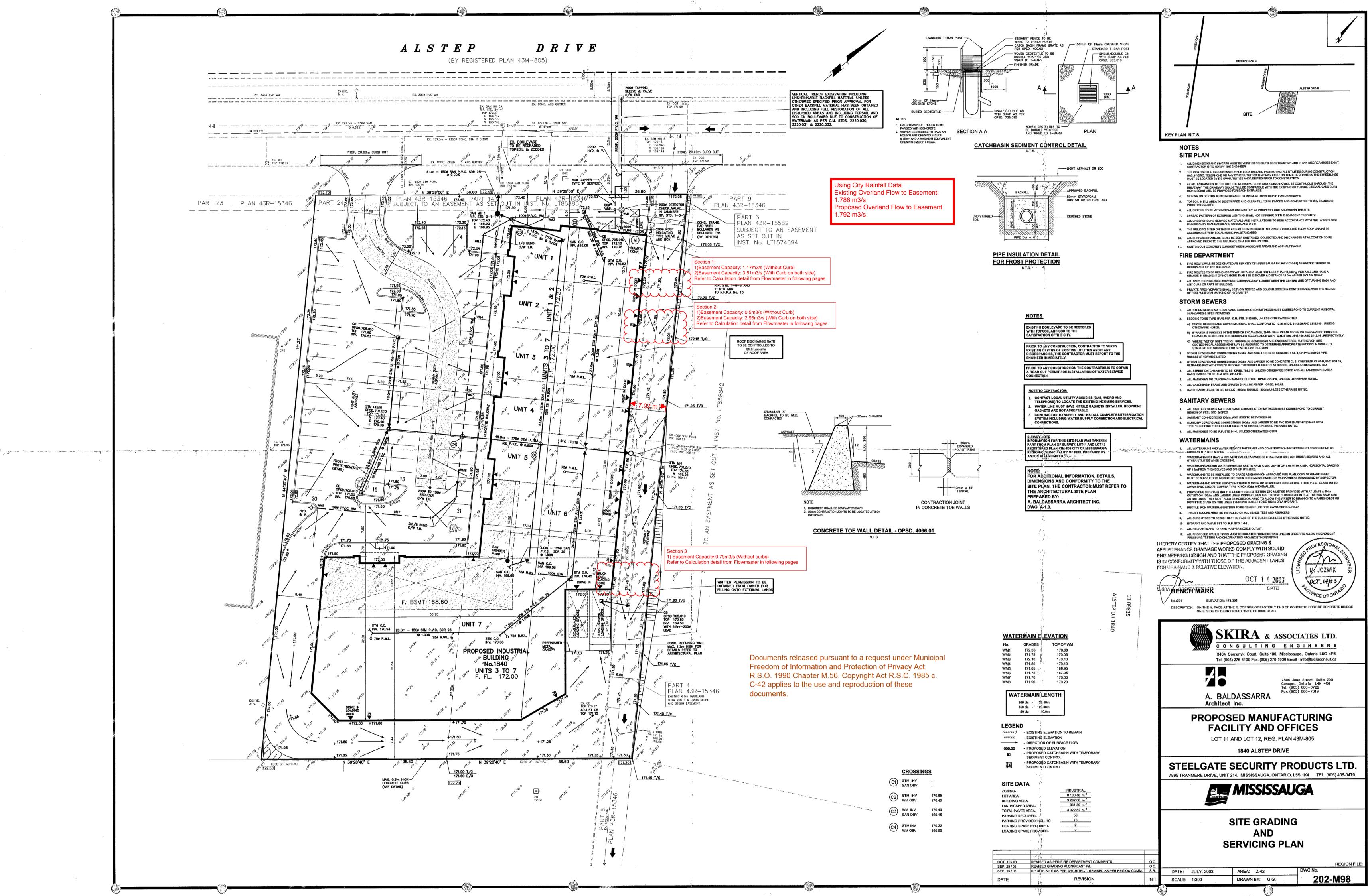
7.61

0.825

Q=0.0028*C*I*A (cms) C : RUNOFF COEFFICIENT Climate Change Scenario- 10-year A = 1486.32 I : RAINFALL INTENSITY B = I=A / (T+B)^ ^C C = A : AREA (ha)

STREETS	AREA No.	MAINTE			INCREMEN	г	то	TAL		FLOW TIME (min)		I	TOTAL Q	S	D	LENGTH	V FULL	Q FULL	% Full	Sec. Time
		FROM	то	A	С	CA	Ατ	CAT	Tcf	Tci	Tc	(mm/h)	(cms)	(%)	(mm)	(m)	(m/s)	(cms)		(min)
City Sewer to HW		•						•				•				•				
Alstep Dr	211	Stub	2	0.95	0.25	0.24	0.95	0.24	10.00		10.0	139.46	0.093	0.80	600	2.5	1.94	0.549	16.9%	0.00
"	202	2	5	3.73	0.83	3.10	4.68	3.33			10.0	139.46	1.302	0.78	750	178.0	2.23	0.983	132.4%	1.33
Menway Court	209	3	4	1.90	0.84	1.60	1.90	1.60	10.00		10.0	139.46	0.623	0.40	600	81.0	1.37	0.388	160.5%	0.98
"	208	4	5	1.18	0.76	0.90	3.08	2.49			11.0	133.35	0.931	0.46	675	120.0	1.59	0.570	163.3%	1.26
Alstep Dr		5	6			0.00	7.76	5.83			12.2	126.35	2.061	0.34	1050	23.0	1.83	1.588	129.8%	0.21
		-						-												
Easement Lot 19	201	CBMH 10	6	2.15	0.72	3.89	5.40	3.89			12.6	124.48	1.354	0.52	750	153.0	1.82	0.803	168.7%	1.40
	213			0.72	0.71															
	212			1.30	0.61															
	203			1.23	0.84															
Alstep Dr	204	6	8	2.45	0.82	2.01	15.61	11.72			14.0	117.77	3.865	0.30	1350	140.0	2.04	2.923	132.2%	1.14
Alstep Dr	205, 231	7	8	2.72	0.75	2.04	2.72	2.04	10.00		10.0	139.46	0.796	0.55	675	132.0	1.74	0.623	127.7%	1.26
Alstep Dr	207	8	9	1.09	0.52	0.57	19.42	14.33			15.1	112.87	4.528	0.40	1350	120.0	2.36	3.376	134.1%	0.85
Alstep Dr	210	9	HW	1.23	0.89	1.09	20.65	15.42			16.0	109.52	4.729	0.40	1350	89.0	2.36	3.376	140.1%	0.63
Private Sewer to HV									•			-								
Alstep Dr/Easement	206	3	2	2.87	0.83	2.38	2.87	2.38			10.00	139.46	0.930	0.35	750	127.0	1.49	0.659	141.2%	1.42
		2	1			0.00	2.87	2.38			11.4	130.82	0.873	0.35	750	120.0	1.49	0.659	132.5%	1.34
		1	HW			0.00	2.87	2.38			12.8	123.67	0.825	0.35	750	58.0	1.49	0.659	125.2%	0.65
Derry Rd Sewer N	-			-	-		1	1				r								
Easement	External	12	13	47.52	0.75	35.64	47.52	35.64			22.00	90.83	9.064	0.76	1650	29.0	3.72	7.946	114.1%	0.13
Bramalea Rd	221	13	14	2.70	0.73	1.97	50.22	37.61			22.13	90.50	9.531	0.76	1650	40.0	3.72	7.946	119.9%	0.18
Derry Rd Sewer S									1		10.00				505		4.00	0.070	110.001	
Bramalea Rd	220	22	21	1.12	0.69	0.77	1.12	0.77			10.00	139.46	0.302	0.40	525	111.4	1.26	0.272	110.9%	1.48
Bramalea Rd Sewer											10.00	100.15					4.07		== +04	
Alstep Dr	232	43	45	0.22	0.62	0.14	0.22	0.14			10.00	139.46	0.053	1.00	300	28.9	1.37	0.097	55.1%	0.35
Bramalea Rd	301	43	45	0.95	0.75	0.71	1.17	0.85			10.4	137.20	0.326	0.30	twin-450	118.0	1.96	0.312	104.4%	1.00

Sewer Design



n= 0.013 Roughness= for Manning's Equation

V_{full} max = 6

m/s m/s

Velocity Limits= V_{full} min = 0.8

Worksheet for 1.Easement Capacity (Section 1- 7m easement, without curb)

Project Description				-
Friction Method	Manning			-
Friction Method	Formula			
Solve For	Discharge			-
Input Data				_
Channel Slope	0.700 %			_
Normal Depth	250.0 mm			-
	Sec	ction Definitions		
Statio			Elevation	
(m))	0+00	(m)	172.
		0+00		172.
		0+04		172.
	. .			
	Roughnes	ss Segment Definiti	ions	
Start Station		Ending Station	Roughness Coefficient	
(0+00, 172.20)		(0+07, 172.	05)	0.0
Options				-
Current Roughness Weighted	Pavlovskii's			-
Method	Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting	Pavlovskii's			
Method	Method			-
Results				-
Discharge	1.17 m ³ /s			
Roughness Coefficient	0.016			
Elevation Range	171.9 to 172.2 m			
Flow Area	0.8 m ²			
Wetted Perimeter	6.1 m			
Hydraulic Radius	138.0 mm			
Top Width	6.00 m			
Normal Depth	250.0 mm			
Critical Depth	268.8 mm			
Critical Slope	0.477 %			
Velocity	1.40 m/s			
Velocity Head	0.10 m			
Specific Energy	0.35 m			
Froude Number	1.194			
Flow Type	Supercritical			

Overland Flow.fm8 6/11/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlowMaster [10.03.00.03] Page 1 of 2

This document was created by an application that isn't licensed to use <u>novaPDF</u>. Purchase a license to generate PDF files without this notice.

Worksheet for 1.Easement Capacity (Section 1- 7m easement, without curb)

GVF Input Data		
Downstream Depth	0.0 mm	
Length	0.0 m	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 mm	
Profile Description	N/A	
Profile Headloss	0.00 m	
Downstream Velocity	Infinity m/s	
Upstream Velocity	Infinity m/s	
Normal Depth	250.0 mm	
Critical Depth	268.8 mm	
Channel Slope	0.700 %	
Critical Slope	0.477 %	

Overland Flow.fm8 6/11/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 2 of 2

This document was created by an application that isn't licensed to use <u>novaPDF</u>. Purchase a license to generate PDF files without this notice.

Worksheet for 1.Easement Capacity (Section 1- 7m easement, with curb)

ii's iod ii's	on Definition D+00 D+00 D+04 D+07 D+07 Segment De nding Station (0+07		Elevation (m) Roughness Coefficient	
ula rge 00 % D.0 mm Section C C C C C C C C C C C C C	0+00 0+00 0+04 0+07 0+07 Segment De nding Station	finitions	(m)	172.05 171.85 172.05 172.20
ge 00 % 0.0 mm Section C C C C C C C C C C C C C C C C C C C	0+00 0+00 0+04 0+07 0+07 Segment De nding Station	finitions	(m)	172.0 171.8 172.0 172.2
00 % 0.0 mm Section C C C C C C C C C C C C C	0+00 0+00 0+04 0+07 0+07 Segment De nding Station	finitions	(m)	172.0 171.8 172.0 172.2
D.0 mm Section C C C C C C C C C C C C C C C C C C C	0+00 0+00 0+04 0+07 0+07 Segment De nding Station	finitions	(m)	172.0 171.8 172.0 172.2
D.0 mm Section C C C C C C C C C C C C C C C C C C C	0+00 0+00 0+04 0+07 0+07 Segment De nding Station	finitions	(m)	172.0 171.8 172.0 172.2
Section CC CC CC Ughness S Er ii's iod ii's iod ii's	0+00 0+00 0+04 0+07 0+07 Segment De nding Station	finitions	(m)	172.0 171.8 172.0 172.2
ii's iod ii's	0+00 0+00 0+04 0+07 0+07 Segment De nding Station	finitions	(m)	172.0! 171.8! 172.0! 172.2(
ii's iod ii's	0+00 0+04 0+07 0+07 Segment De nding Station		(m)	172.0 171.8 172.0 172.2
ii's iod ii's	0+00 0+04 0+07 0+07 Segment De nding Station			172.0! 171.8! 172.0! 172.2(
ii's iod ii's	0+00 0+04 0+07 0+07 Segment De nding Station		Roughness Coefficient	172.0 171.8 172.0 172.2
C C C Ughness ! E I I I I I S I I S I I S I I S I I S I I S I I S I I I I I S I	0+04 0+07 0+07 Segment De nding Station		Roughness Coefficient	171.8 172.0 172.2
C Ughness Er ii's iod ii's iod ii's	0+07 0+07 Segment De nding Station		Roughness Coefficient	172.0 172.2
Ughness S Er ii's iod ii's iod ii's iod	0+07 Segment De		Roughness Coefficient	172.2
Ei ii's iod ii's iod ii's	nding Station		Roughness Coefficient	
Ei ii's iod ii's iod ii's	nding Station		Roughness Coefficient	
ii's iod ii's iod ii's	-	7, 172.20)		
iod ii's iod ii's				-
iod ii's iod ii's				-
iod ii's iod ii's				
iod ii's				
ii's				
od				_
				-
51 m³/s				-
16				
56 m				
00				
cal				
ntley Systems,		ods Solution		FlowMas
27 Siemon C	Center			.10.03.00 Page 1 0
		116 1.7 m ² 7.3 m 9.3 mm 10 m 0.0 mm 6.9 mm 97 % 02 m/s 21 m 56 m 100 cal ntley Systems, Inc. Haestad Meth	116 to m 1.7 m ² 7.3 m 9.3 mm 10 m 0.0 mm 6.9 mm 97 % 02 m/s 21 m 56 m 900 cal mtley Systems, Inc. Haestad Methods Solution	116 to m 1.7 m ² 7.3 m 9.3 mm 10 m 0.0 mm 6.9 mm 97 % 02 m/s 21 m 56 m 900 cal ntley Systems, Inc. Haestad Methods Solution

Worksheet for 1.Easement Capacity (Section 1- 7m easement, with curb)

GVF Input Data		
Downstream Depth	0.0 mm	
Length	0.0 m	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 mm	
Profile Description	N/A	
Profile Headloss	0.00 m	
Downstream Velocity	Infinity m/s	
Upstream Velocity	Infinity m/s	
Normal Depth	350.0 mm	
Critical Depth	396.9 mm	
Channel Slope	0.700 %	
Critical Slope	0.397 %	

Overland Flow.fm8 6/11/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 2 of 2

Worksheet for 1.Easement Capacity (Section 2- 7m easement, without curb)

Project Description				-
	Manning			-
Friction Method	Formula			
Solve For	Discharge			-
Input Data				_
Channel Slope	0.700 %			_
Normal Depth	250.0 mm			-
	Sec	ction Definitions		
Statio			Elevation	
(m))	0+00	(m)	172.
		0+00		172.
		0+04		172.
	Roughnes	ss Segment Definiti	ions	
Start Station		Ending Station	Roughness Coefficient	
(0+00, 172.20)		(0+07, 172.	05)	0.0
Options				-
Current Roughness Weighted	Pavlovskii's			_
Method	Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting	Pavlovskii's			
Method	Method			_
Results				-
Discharge	1.17 m ³ /s			-
Roughness Coefficient	0.016			
Elevation Range	171.9 to 172.2 m			
Flow Area	0.8 m²			
Wetted Perimeter	6.1 m			
Hydraulic Radius	138.0 mm			
Top Width	6.00 m			
Normal Depth	250.0 mm			
Critical Depth	268.8 mm			
Critical Slope	0.477 %			
Velocity	1.40 m/s			
Velocity Head	0.10 m			
Specific Energy	0.35 m			
Froude Number	1.194			
Flow Type	Supercritical			

Overland Flow.fm8 6/11/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlowMaster [10.03.00.03] Page 1 of 2

Worksheet for 1.Easement Capacity (Section 2- 7m easement, without curb)

GVF Input Data		
Downstream Depth	0.0 mm	
Length	0.0 m	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 mm	
Profile Description	N/A	
Profile Headloss	0.00 m	
Downstream Velocity	Infinity m/s	
Upstream Velocity	Infinity m/s	
Normal Depth	250.0 mm	
Critical Depth	268.8 mm	
Channel Slope	0.700 %	
Critical Slope	0.477 %	

Overland Flow.fm8 6/11/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 2 of 2

Worksheet for 2.Easement Capacity (Section 2 - 7m easement, with curb)

Project Description				-
Friction Method	Manning			-
	Formula			
Solve For	Discharge			-
Input Data				_
Channel Slope	0.700 %			_
Normal Depth	300.0 mm			-
	Sec	ction Definitions		_
Station (m)	n		Elevation (m)	
(11)		0+00	(11)	172.1
		0+00		172.0
		0+04		171.8
		0+07		172.0
		0+07		172.1
	Roughnes	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
0+00, 172.15)		(0+07, 172.15)	Rougimoss ocomorant	0.01
Options				_
Current Roughness Weighted Method	Pavlovskii's Method			
	Doulouckiile			
Open Channel Weighting	Pavlovskii's			
Method	Method			
Method Closed Channel Weighting	Method Pavlovskii's			
Method	Method			_
Method Closed Channel Weighting	Method Pavlovskii's			=
Method Closed Channel Weighting Method	Method Pavlovskii's			-
Method Closed Channel Weighting Method Results	Method Pavlovskii's Method			-
Method Closed Channel Weighting Method Results Discharge Roughness Coefficient	Method Pavlovskii's Method 2.95 m ³ /s 0.016 171.9 to			-
Method Closed Channel Weighting Method Results Discharge Roughness Coefficient Elevation Range	Method Pavlovskii's Method 2.95 m ³ /s 0.016 171.9 to 172.2 m			-
Method Closed Channel Weighting Method Results Discharge Roughness Coefficient Elevation Range Flow Area	Method Pavlovskii's Method 2.95 m ³ /s 0.016 171.9 to 172.2 m 1.6 m ²			-
Method Closed Channel Weighting Method Results Discharge Roughness Coefficient Elevation Range Flow Area Wetted Perimeter	Method Pavlovskii's Method 2.95 m ³ /s 0.016 171.9 to 172.2 m 1.6 m ² 7.3 m			-
Method Closed Channel Weighting Method Results Discharge Roughness Coefficient Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method 2.95 m ³ /s 0.016 171.9 to 172.2 m 1.6 m ² 7.3 m 215.7 mm			-
Method Closed Channel Weighting Method Results Discharge Roughness Coefficient Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width	Method Pavlovskii's Method 2.95 m ³ /s 0.016 171.9 to 172.2 m 1.6 m ² 7.3 m 215.7 mm 7.10 m			-
Method Closed Channel Weighting Method Results Discharge Roughness Coefficient Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	Method Pavlovskii's Method 2.95 m ³ /s 0.016 171.9 to 172.2 m 1.6 m ² 7.3 m 215.7 mm 7.10 m 300.0 mm			-
Method Closed Channel Weighting Method Results Discharge Roughness Coefficient Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Method Pavlovskii's Method 2.95 m ³ /s 0.016 171.9 to 172.2 m 1.6 m ² 7.3 m 215.7 mm 7.10 m 300.0 mm 339.3 mm			-
Method Closed Channel Weighting Method Results Discharge Roughness Coefficient Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	Method Pavlovskii's Method 2.95 m ³ /s 0.016 171.9 to 172.2 m 1.6 m ² 7.3 m 215.7 mm 7.10 m 300.0 mm 339.3 mm 0.412 %			-
Method Closed Channel Weighting Method Results Discharge Roughness Coefficient Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method 2.95 m ³ /s 0.016 171.9 to 172.2 m 1.6 m ² 7.3 m 215.7 mm 7.10 m 300.0 mm 339.3 mm 0.412 % 1.88 m/s			-
Method Closed Channel Weighting Method Results Discharge Roughness Coefficient Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method 2.95 m ³ /s 0.016 171.9 to 172.2 m 1.6 m ² 7.3 m 215.7 mm 7.10 m 300.0 mm 339.3 mm 0.412 % 1.88 m/s 0.18 m			-
Method Closed Channel Weighting Method Results Discharge Roughness Coefficient Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head Specific Energy	Method Pavlovskii's Method 2.95 m ³ /s 0.016 171.9 to 172.2 m 1.6 m ² 7.3 m 215.7 mm 7.10 m 300.0 mm 339.3 mm 0.412 % 1.88 m/s 0.18 m 0.48 m			-
Method Closed Channel Weighting Method Results Discharge Roughness Coefficient Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number	Method Pavlovskii's Method 2.95 m ³ /s 0.016 171.9 to 172.2 m 1.6 m ² 7.3 m 215.7 mm 7.10 m 300.0 mm 339.3 mm 0.412 % 1.88 m/s 0.18 m 0.48 m 1.278			-
Method Closed Channel Weighting Method Results Discharge Roughness Coefficient Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head Specific Energy	Method Pavlovskii's Method 2.95 m ³ /s 0.016 171.9 to 172.2 m 1.6 m ² 7.3 m 215.7 mm 7.10 m 300.0 mm 339.3 mm 0.412 % 1.88 m/s 0.18 m 0.48 m 1.278 Supercritical			-
Method Closed Channel Weighting Method Results Discharge Roughness Coefficient Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number	Method Pavlovskii's Method 2.95 m ³ /s 0.016 171.9 to 172.2 m 1.6 m ² 7.3 m 215.7 mm 7.10 m 300.0 mm 339.3 mm 0.412 % 1.88 m/s 0.18 m 0.48 m 1.278 Supercritical	ms, Inc. Haestad Methods Solution Center		- - FlowMas 10.03.00.

Worksheet for 2.Easement Capacity (Section 2 - 7m easement, with curb)

GVF Input Data		
Downstream Depth	0.0 mm	
Length	0.0 m	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 mm	
Profile Description	N/A	
Profile Headloss	0.00 m	
Downstream Velocity	Infinity m/s	
Upstream Velocity	Infinity m/s	
Normal Depth	300.0 mm	
Critical Depth	339.3 mm	
Channel Slope	0.700 %	
Critical Slope	0.412 %	

Overland Flow.fm8 6/11/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 2 of 2

Worksheet for 3.Easement Capacity (Section 3 - 7m easement, without curb)

				-
Project Description				_
Friction Method	Manning			
	Formula			
Solve For	Discharge			-
Input Data				-
Channel Slope	0.700 %			-
Normal Depth	200.0 mm			-
	Sec	ction Definitions		
Statio	n		Elevation	
(m)			(m)	
		0+00		171.0
		0+04		171.
		0+07		171.
	Roughnes	ss Segment Definitio	ns	
Start Station		Ending Station	Roughness Coefficient	
(0+00, 171.65)		(0+07, 171.65		0.0
				-
Options				_
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting	Pavlovskii's			
Method	Method			
Closed Channel Weighting	Pavlovskii's			
Method	Method			-
Results				-
Discharge	0.79 m³/s			-
Roughness Coefficient	0.016			
Elevation Range	171.5 to			
	171.7 m 0.7 m²			
Flow Area				
Wetted Perimeter	7.0 m 99.8 mm			
Hydraulic Radius	7.00 m			
Top Width				
Normal Depth	200.0 mm			
Critical Depth	208.8 mm			
Critical Slope	0.529 %			
Velocity	1.13 m/s			
Velocity Head	0.06 m			
Specific Energy	0.26 m			
Froude Number	1.136			
Flow Type	Supercritical			

Overland Flow.fm8 6/11/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlowMaster [10.03.00.03] Page 1 of 2

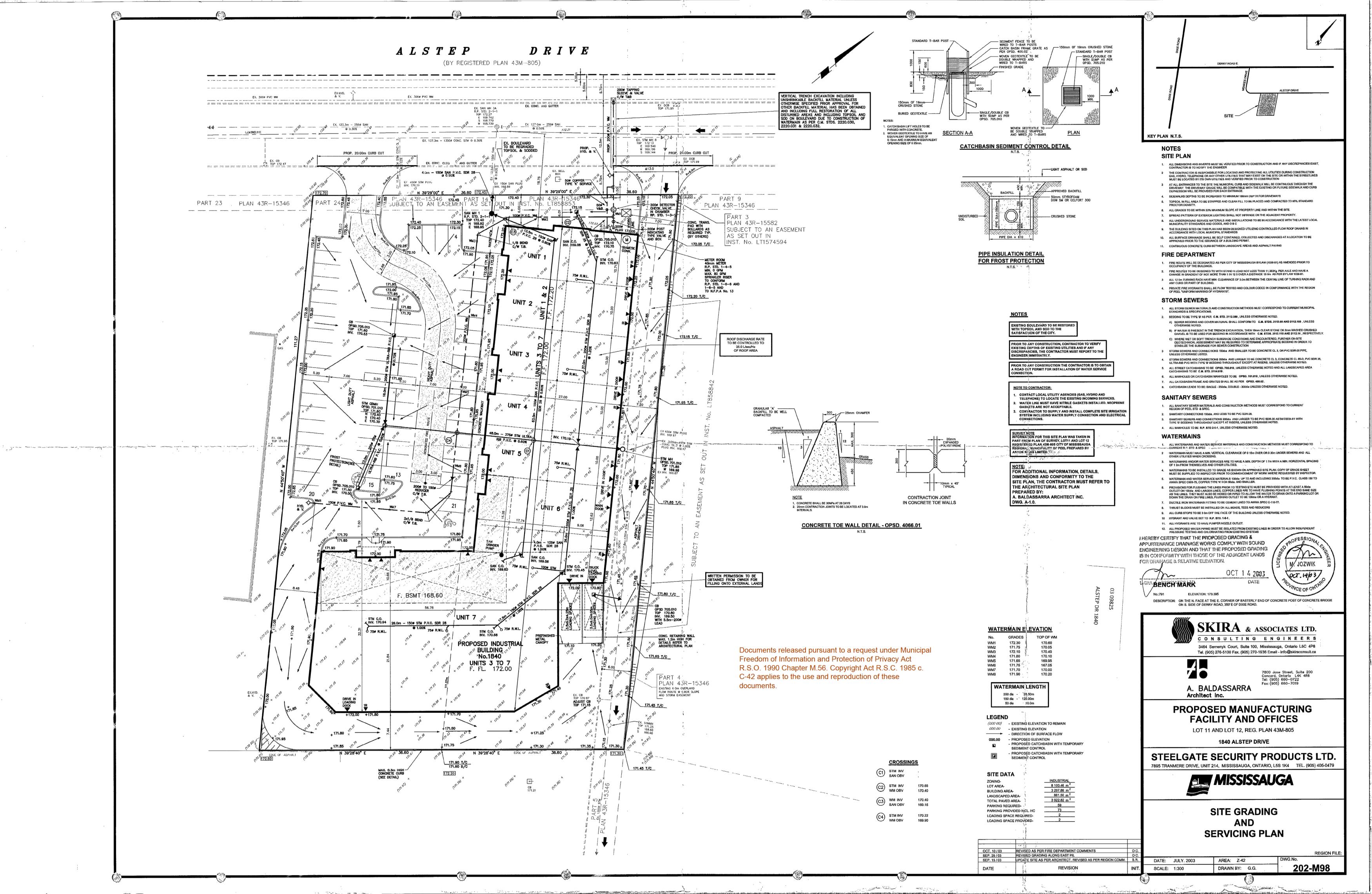
Worksheet for 3.Easement Capacity (Section 3 - 7m easement, without curb)

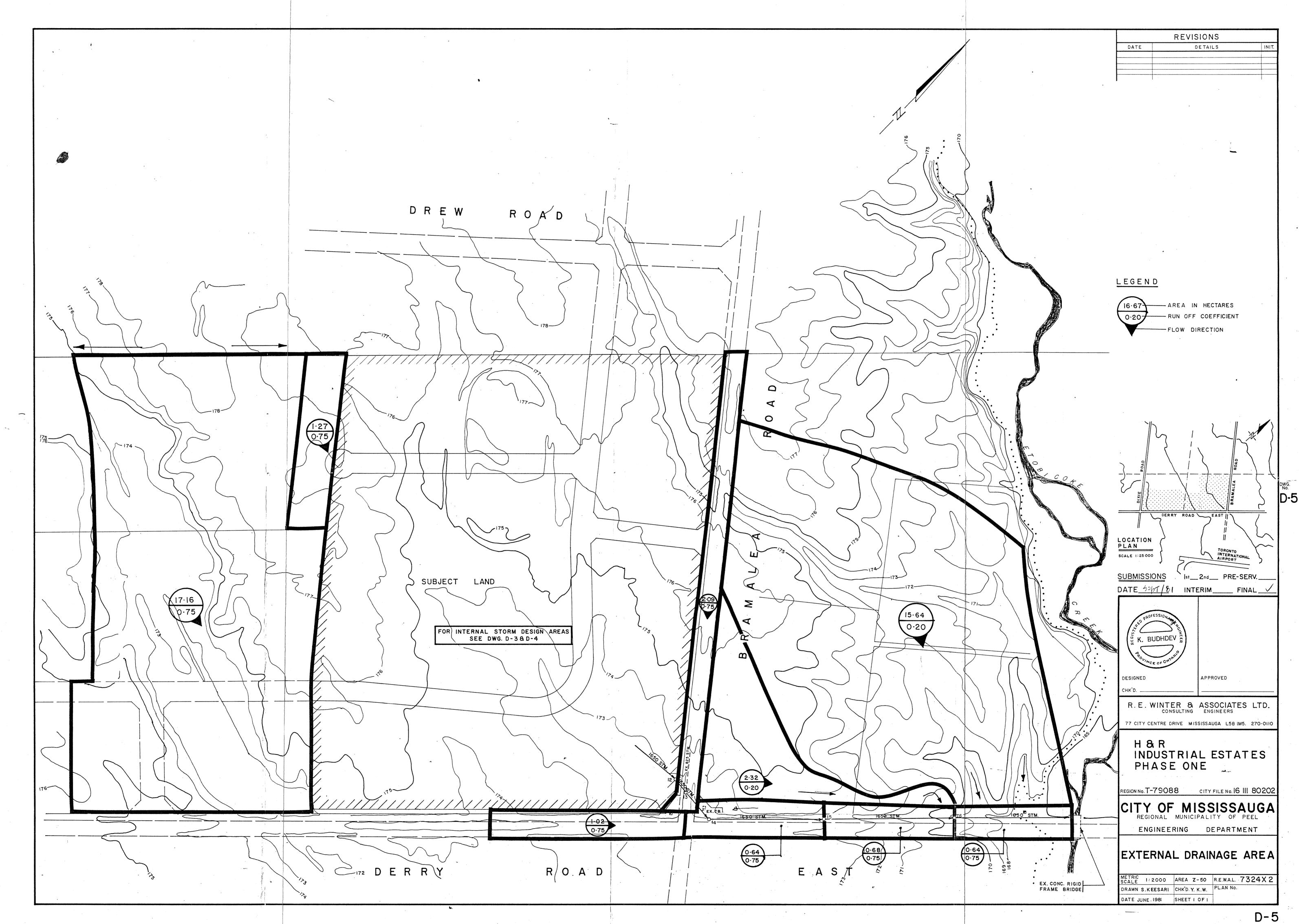
GVF Input Data		
Downstream Depth	0.0 mm	
Length	0.0 m	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 mm	
Profile Description	N/A	
Profile Headloss	0.00 m	
Downstream Velocity	Infinity m/s	
Upstream Velocity	Infinity m/s	
Normal Depth	200.0 mm	
Critical Depth	208.8 mm	
Channel Slope	0.700 %	
Critical Slope	0.529 %	

Overland Flow.fm8 6/11/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 2 of 2

Worksheet for Alstep Dr- Capacity

Project Description				-
Friction Method	Manning Formula			
Solve For	Discharge			
Input Data				-
Channel Slope	1.000 %			-
Normal Depth	150.0 mm			
	Sec	ction Definitions		-
Stati			Elevation	
(m))	0+00	(m)	171.0
		0+00		170.8
		0+06		171.0
		0+12		170.8
		0+12		170.0
	Roughnes	ss Segment Definitions		
Start Station	nouginio	Ending Station	Roughness Coefficient	
(0+00, 171.00)		(0+12, 171.00)	Roughness coefficient	0.0
Options				-
Current Roughness Weighted	Pavlovskii's			-
Method	Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting	Pavlovskii's			
Method	Method			-
Results				-
Discharge	0.87 m³/s			
Roughness Coefficient	0.016			
Elevation Range	170.9 to			
Flow Area	171.0 m			
	0.8 m² 10.9 m			
Wetted Perimeter	73.0 mm			
Hydraulic Radius Top Width	10.60 m			
Normal Depth	150.0 mm			
Critical Depth	165.2 mm			
Critical Slope	0.597 %			
Velocity	0.597 % 1.09 m/s			
Velocity Head	0.06 m			
	0.21 m			
Specific Energy	1 070			
Froude Number Flow Type	1.273 Supercritical			


Overland Flow.fm8 6/11/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 2


GVF Input Data		
Downstream Depth	0.0 mm	
Length	0.0 m	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 mm	
Profile Description	N/A	
Profile Headloss	0.00 m	
Downstream Velocity	Infinity m/s	
Upstream Velocity	Infinity m/s	
Normal Depth	150.0 mm	
Critical Depth	165.2 mm	
Channel Slope	1.000 %	
Critical Slope	0.597 %	

Worksheet for Alstep Dr- Capacity

Overland Flow.fm8 6/11/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 2 of 2

APPENDIX C

NUBSINISION ____ MAR THESE (PARTE SOP.

CITY OF MISSISSAUGA

Sheel N= _____OF _____ PROJECT Nº _____7324X2 ____0.013

MOULTANT _ R E WINTER & ASSOCIATES LTD _

MANAGE AREA PLAN Nº Z-50

STORM SEWER DESIGN CHART REVISED: JUY BI DESIGNED BY _____ KUS DATE 1/21/81

.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AMAGE AREA PLAN Nº	2	- 50								1				DESIGN	ED BA	<u>-</u> -	DA	E	1.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			TO	AREA	RUNOFF		ACCUM	T. OF C	INTENSIT	}	INVERT	ELEVATION	<i></i>		GRACENT		CAPACITY	VELOCITY		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LOCATION		М.Н	(ha)	COEFF	AIR	AIR	(minutes)	(mm./hr)	· · · ·	UPPER MH.	LOWER MH			%	-	(c m s)	(mps)		1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		EXTERN	JAL)	1.27	0.75	0.95														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GAGE COURT		1	5.36	6.75	4.02	4.97	15.0	100	1.381	172.255	171.320	0.935	170	0.55	900	1.40	2.13	1.2	\$.15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3	4	1.68	~	1.41	6.38	16.3	96	1.701	171-170	170.570	0.60	150	0.40	1050	1.85	2.02	1.0	004
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								(17.3)					-							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1. A. A.		İ			2 3 4		•	*		3	· .		<u>*</u> ,				-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRANKIERE DR	11	4	3.33	0.75	2.498	2.498	15.0	100	0.694	172.850	171.290	1.56	120	1.30	600	0.72	2.46	6.8	0.75
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N	! 4	16	0.44		0.330	9:208	17.3	93	2.379	170-530	169.911	0.619	82.5	0.75	1050	2.45	2:76	0.5	0.24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	· · · ·	İ						(17.8)							:					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		I			· ·						×	а. А.								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BOTLEN RD.	5	6	1.35	0.75	1.013	1.013	15.0	100	0.281	172.107	170.575	1.530	90	1.70	450	0.10	2.35	0.6	0.89
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1.																		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRANNERE DR	6	.7	4.32	0.75	3.24	13.461	17.8	91	3.403	169.671	168.991	0.68	170	0.40	1350	. 3.51	2.35	1.2	0.03
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		17	11			-	13,461	19.0	88	3.290	168.961	168.773	0.188	47	0.40	1350	3.51	2.36	0 3	0.46
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					FREM	upper	END TI	STUFM	M.H.	18 = 1750	= 530.4.		e e							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2		۴.	$T_c = 15$	+ (530	-50)/2	x60 =	19.0 HIN.										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(EYTE	FNI.L	17.16	0.75	12.87													.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TILLING CE DR.	8.	9	4.05	~ ~	3.038	15.918	19.0	88	3.889	170.508	169.785	0.723	130	0.55	1350	4.13	2.7!	0.3	0 150
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	× 1	9	10	3.7B	X1 · ·	Z.835	18.743	19.8	85	4.425	16.9.635	168-955	0.68	170	0.40	1500	4.66	2.5	1.1.	(10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\$ \$	10	111	0.66	~ ~ ~	0.495	19.238	20.9	83	4.435	168.855	68.685	0.17	42.5	0.40	1500	4.66	215	0.3	c. 372
$\frac{12 \cdot 91 \cdot (4 = 2.73)}{13 \cdot 14} \frac{13}{14} \frac{14}{2.73} \frac{12.048}{15} \frac{37.687}{22.1} \frac{22.1}{79} \frac{79}{8.270} \frac{8.270}{166.635} \frac{166.635}{164.942} \frac{16.631}{2.16} \frac{0.364}{160} \frac{40}{11} \frac{11}{11} \frac{11}{11} \frac{11}{10} \frac{0.2}{0.160} \frac{0.160}{0.75} \frac{0.2}{0.510} \frac{0.464}{38.611} \frac{23.0}{77} \frac{77}{8.269} \frac{8.269}{164.942} \frac{163.657}{1.292} \frac{1.292}{170} \frac{170}{10} \frac{11}{11} \frac{11}{11} \frac{11}{11} \frac{0.7}{0.8} \frac{0.05}{0.05} $	EAS M. M.	11.	12	2.90	- 11	2.175	34.874	21.2	82	7.944	168.313			/		1650	8.17	3.70	0.5	1.155
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	12	13	1.02	N	0.765	35.639	22.0	80	7:920	166.885	166.615	0.220	29	0.76	1650	8.59	3.73	<i>c</i> .	5.4?
DERRYRDE 14 15	12 . 91 (.4=2.73	13	14	2:73			37.687	22.1	79	8.270	166.635	166.331	0.3,04	40	~	11	11	••	0.2	0.166
15 16 2.32 0.20 0.464 38.61 23.0 77 8.269 164.94.2 163.657 1.292 170. " " " " " " " " " " " " " " " " " " "			15	-	-	1	-37.687	2.2.2,	78	8.166	166.165	164.942	1.216	160	~ ~	~~	N. 1	Ų.	0.7	0
16 EX. B.C 15.64 0.20 3.128 42.269 23.8 74 8.689 163.451 162.313 1.176 140 0.84 W 8.72 395 0.7 0.23	2	-	16	2.32	0.20	0.510	1 50.ELI		77	. 8.269	164.94.2	163.657	1.292	170.	ו		× •	. 1	~ B	0.03
	X.		EX. B.C.			3.128	42.269	23.8	-14	8.689	163.451	162.313	1.176	140	0.84	~	8.72	399	0.7	0.236
														:					1	

APPENDIX D

		Existing Condition Proposed Condition						
ID	Area	Imperviousness (%)	Total TSS loading (m³yr)	Imperviousness (%)	Total TSS loading (m³/yr)	Increase in total TSS loading (m³/yr)		
Area 220	1.11	65.76	2.57	68.31	2.73	0.16		
Area 221	2.70	70.36	2.86	73.24	3.0	0.18		

Annual TSS loading calculated for Derry Road with MOE Table 6.3

Province:	Ontario		Project Name:	EA_BOM	
City:	Mississauga		Project Number:	18572	
vearest Rainfall Station:	TORONTO LESTER B. PEAR	RSON INT'L	Designer Name:	Jessy Zhang	
	AP		Designer Company:	81HJ	
NCDC Rainfall Station Id:	8733		Designer Email:	Jessy.Zhang@exp.o	com
ears of Rainfall Data:	44		Designer Phone:	905-793-9800	
Site Newser			EOR Name:		
Site Name:			EOR Company:		
Drainage Area (ha):	0.22		EOR Email:		
% Imperviousness:	57.00		EOR Phone:		
	efficient 'c': 0.64				
Particle Size Distribution:	Fine				l Sediment
Target TSS Removal (%):	80.0				Reduction
Required Water Quality Runo	ff Volumo Conturo (%):	90.00		Sizing S	ummary
Estimated Water Quality Flow		5.26		Stormceptor	TSS Removal
		5.20		Model	Provided (%)
Dil / Fuel Spill Risk Site?		No		EF4	87
Jpstream Flow Control?		No		EF6	91
Peak Conveyance (maximum)	Flow Rate (L/s):			EF8	92
Site Sediment Transport Rate	(kg/ha/yr):			EF10	92
i				EF12	93
	Estimat		Recommended Innual Sediment (T Water Quality Run	-	ion (%):

Forterra

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

PERFORMANCE

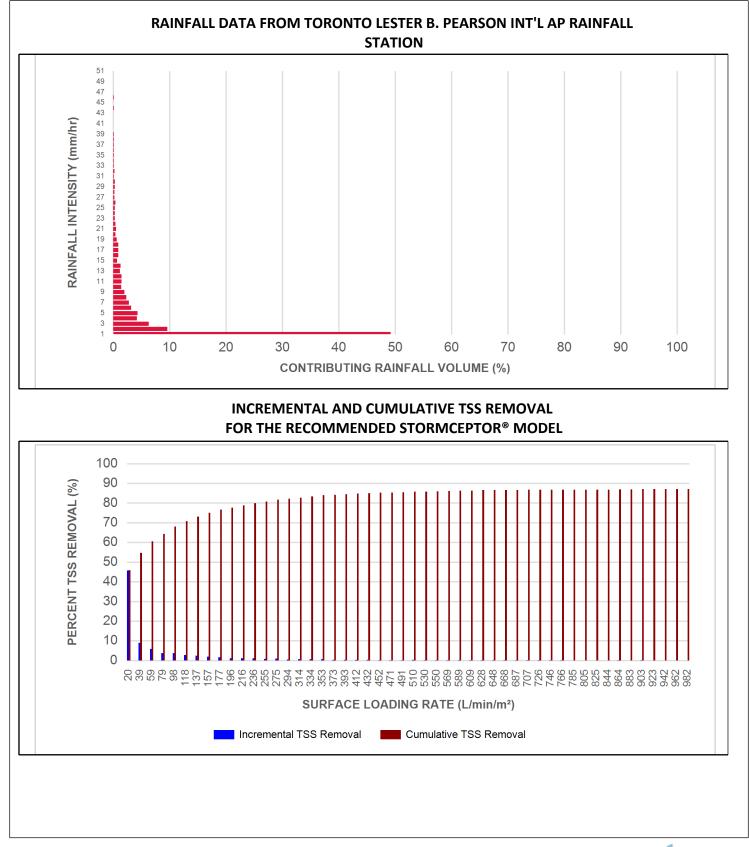
► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators** for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Demonst
Size (µm)	Than	Fraction (µm)	Percent
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5

Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
1	49.2	49.2	0.39	24.0	20.0	93	45.8	45.8
2	9.6	58.8	0.79	47.0	39.0	93	8.9	54.7
3	6.3	65.1	1.18	71.0	59.0	92	5.8	60.5
4	4.2	69.3	1.57	94.0	79.0	90	3.8	64.3
5	4.3	73.6	1.96	118.0	98.0	88	3.8	68.0
6	3.2	76.8	2.36	141.0	118.0	86	2.7	70.8
7	2.8	79.6	2.75	165.0	137.0	84	2.3	73.1
8	2.3	81.9	3.14	188.0	157.0	81	1.9	75.0
9	2.0	83.9	3.53	212.0	177.0	79	1.6	76.6
10	1.4	85.3	3.93	236.0	196.0	77	1.1	77.7
11	1.5	86.8	4.32	259.0	216.0	75	1.1	78.8
12	1.5	88.3	4.71	283.0	236.0	73	1.1	79.9
13	1.2	89.5	5.10	306.0	255.0	72	0.9	80.7
14	1.3	90.8	5.50	330.0	275.0	70	0.9	81.7
15	0.7	91.5	5.89	353.0	294.0	68	0.5	82.1
16	0.9	92.4	6.28	377.0	314.0	66	0.6	82.7
17	0.9	93.3	6.68	401.0	334.0	64	0.6	83.3
18	0.9	94.2	7.07	424.0	353.0	63	0.6	83.9
19	0.6	94.8	7.46	448.0	373.0	61	0.4	84.2
20	0.4	95.2	7.85	471.0	393.0	59	0.2	84.5
21	0.5	95.7	8.25	495.0	412.0	58	0.3	84.8
22	0.4	96.1	8.64	518.0	432.0	58	0.2	85.0
23	0.3	96.4	9.03	542.0	452.0	58	0.2	85.2
24	0.3	96.7	9.42	565.0	471.0	57	0.2	85.3
25	0.3	97.0	9.82	589.0	491.0	57	0.2	85.5



Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
26	0.4	97.4	10.21	613.0	510.0	57	0.2	85.7
27	0.2	97.6	10.60	636.0	530.0	57	0.1	85.8
28	0.2	97.8	10.99	660.0	550.0	57	0.1	86.0
29	0.3	98.1	11.39	683.0	569.0	56	0.2	86.1
30	0.3	98.4	11.78	707.0	589.0	56	0.2	86.3
31	0.1	98.5	12.17	730.0	609.0	56	0.1	86.3
32	0.2	98.7	12.56	754.0	628.0	56	0.1	86.5
33	0.1	98.8	12.96	777.0	648.0	56	0.1	86.5
34	0.1	98.9	13.35	801.0	668.0	56	0.1	86.6
35	0.1	99.0	13.74	825.0	687.0	56	0.1	86.6
36	0.1	99.1	14.14	848.0	707.0	56	0.1	86.7
37	0.1	99.2	14.53	872.0	726.0	55	0.1	86.7
38	0.1	99.3	14.92	895.0	746.0	55	0.1	86.8
39	0.1	99.4	15.31	919.0	766.0	55	0.1	86.8
40	0.0	99.4	15.71	942.0	785.0	55	0.0	86.8
41	0.0	99.4	16.10	966.0	805.0	55	0.0	86.8
42	0.0	99.4	16.49	989.0	825.0	55	0.0	86.8
43	0.0	99.4	16.88	1013.0	844.0	55	0.0	86.8
44	0.1	99.5	17.28	1037.0	864.0	55	0.1	86.9
45	0.0	99.5	17.67	1060.0	883.0	55	0.0	86.9
46	0.1	99.6	18.06	1084.0	903.0	55	0.1	87.0
47	0.0	99.6	18.45	1107.0	923.0	54	0.0	87.0
48	0.0	99.6	18.85	1131.0	942.0	54	0.0	87.0
49	0.0	99.6	19.24	1154.0	962.0	54	0.0	87.0
50	0.0	99.6	19.63	1178.0	982.0	54	0.0	87.0
		-	-	Estimated Net	Annual Sedim	ent (TSS) Loa	d Reduction =	87 %

FORTERRA

Maximum Pipe Diameter / Peak Conveyance											
Stormceptor EF / EFO	Model Diameter		Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inlet Pipe Diameter		Max Outl Diamo	•	Peak Conveyance Flow Rate	
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)		
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15		
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35		
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60		
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100		
EF12 / EFO12	3.6	12	90	1828	72	1828	72	2830	100		

SCOUR PREVENTION AND ONLINE CONFIGURATION

Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.


DESIGN FLEXIBILITY

► Stormceptor[®] EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor® EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

45*-90* 0*-45* 0*-45* 45*-90*

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0° - 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

Pollutant Capacity												
Stormceptor EF / EFO	Moo Diam		Pipe In	(Outlet vert to Floor)	Oil Volume		Recommended Sediment Maintenance Depth *		Maxiı Sediment ^v		Maxin Sediment	
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EFO12	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

*Increased sump depth may be added to increase sediment storage capacity

** Average density of wet packed sediment in sump = $1.6 \text{ kg/L} (100 \text{ lb/ft}^3)$

Feature	Benefit	Feature Appeals To		
Patent-pending enhanced flow treatment	Superior, verified third-party	Regulator, Specifying & Design Engineer		
and scour prevention technology	performance	Regulator, specifying & Design Engineer		
Third-party verified light liquid capture	Proven performance for fuel/oil hotspot	Regulator, Specifying & Design Engineer,		
and retention for EFO version	locations	Site Owner		
Functions as bend, junction or inlet	Design flexibility	Specifying & Design Engineer		
structure	Design nexionity	Spectrying & Design Engineer		
Minimal drop between inlet and outlet	Site installation ease	Contractor		
Large diameter outlet riser for inspection	Easy maintenance access from grade	Maintenance Contractor & Site Owner		
and maintenance	casy mannee access from grade	Manifenance contractor & site Owner		

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators.**

1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The **minimum** sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units:

6 ft (1829 mm) Diameter OGS Units:

8 ft (2438 mm) Diameter OGS Units:

10 ft (3048 mm) Diameter OGS Units: 12 ft (3657 mm) Diameter OGS Units: $\begin{array}{l} 1.19 \ m^3 \ sediment \ / \ 265 \ L \ oil \\ 3.48 \ m^3 \ sediment \ / \ 609 \ L \ oil \\ 8.78 \ m^3 \ sediment \ / \ 1,071 \ L \ oil \\ 17.78 \ m^3 \ sediment \ / \ 1,673 \ L \ oil \\ 31.23 \ m^3 \ sediment \ / \ 2,476 \ L \ oil \\ \end{array}$

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing shall be determined using historical rainfall data and a sediment removal performance curve derived from the actual third-party verified laboratory testing data. The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

