Municipal Class Environmental Assessment for Road Improvements near Derry Road East and Alstep Drive: Environmental Study Report June 30, 2022

> Municipal Class Environmental Assessment for Road Improvements near Derry Road East and Alstep Drive:

> > Environmental Study Report

Appendix F: Background Hydrogeological Assessment





# Bombardier Aerospace Project (Off-Site Work), Mississauga, Ontario

Hydrogeological Investigation

**Client:** *EXP* – *Transport Division* 

Attention: Mr. Carlyle Glean

Type of Document: Updated Final

Project Name: Bombardier Aerospace Project (Off-Site Work), Mississauga, Ontario

Project Number: BRM-02018572-00

EXP Services Inc. 1595 Clark Boulevard Brampton, ON, L6T 4V1 t: 905.793.9800 f: 905.793.0641

Date Submitted: 2021-10-29

# **Table of Contents**

| 1 | Introd | luction                                             | 3  |
|---|--------|-----------------------------------------------------|----|
|   | 1.1    | Project Description                                 | 3  |
|   | 1.2    | Project Objectives                                  | 3  |
|   | 1.3    | Scope of Work                                       | 3  |
|   | 1.4    | Review of Previous Reports                          | 4  |
| 2 | Hydro  | ogeological Setting                                 | 5  |
|   | 2.1    | Regional Setting                                    | 5  |
|   | 2.1.1  | Regional Physiography                               | 5  |
|   | 2.1.2  | Regional Geology and Hydrogeology                   | 5  |
|   | 2.1.3  | Existing Water Well Survey                          | 5  |
|   | 2.2    | Site Setting                                        | 6  |
|   | 2.2.1  | Site Topography                                     | 6  |
|   | 2.2.2  | Local Surface Water Features                        | 6  |
|   | 2.2.3  | Local Geology and Hydrogeology                      | 6  |
| 3 | Result | ts                                                  | 8  |
|   | 3.1    | Monitoring Well Details                             | 8  |
|   | 3.2    | Water Level Monitoring                              | 8  |
|   | 3.3    | Hydraulic Conductivity Testing                      | 8  |
|   | 3.4    | Groundwater Quality                                 | 9  |
| 4 | Const  | ruction Dewatering Assessment                       | 1  |
|   | 4.1    | Dewatering Flow Rate Estimate and Zone of Influence | 11 |
|   | 4.2    | Sichardt's Radius of Influence                      | 12 |
|   | 4.3    | Stormwater                                          | 12 |
|   | 4.4    | Results of Construction Dewatering Rate Estimate    | 12 |
|   | 4.5    | Construction MECP Water Taking Permit               | 13 |
| 5 | Enviro | onmental Impact                                     | 4  |
|   | 5.1    | Surface Water Features                              | 14 |
|   | 5.2    | Groundwater Sources                                 | 14 |



|   |        |                               | EXP Services Inc.<br>Iississauga, Ontario<br>ogical Investigation<br>BRM-02018572-00<br>October 29, 2021 | 2  |
|---|--------|-------------------------------|----------------------------------------------------------------------------------------------------------|----|
|   | 5.3    | Geotechnical Considerations   |                                                                                                          | 14 |
|   | 5.4    | Groundwater Quality           |                                                                                                          | 14 |
|   | 5.5    | Well Decommissioning          |                                                                                                          | 15 |
| 6 | Concl  | nclusions and Recommendations | 16                                                                                                       |    |
| 7 | Limita | nitations                     | 17                                                                                                       |    |
| 8 | Refer  | erences                       |                                                                                                          |    |

# **List of Figures**

- Figure 1 Site Plan
- Figure 2 Surficial Geology
- Figure 3 MECP Water Well Records
- Figure 4 Borehole and Monitoring Well Locations
- Figure 5 Cross Section A-A'
- Figure 6 Groundwater Contours

# **List of Attachments**

Attachment 1 – Prefferred Alternatives

# **List of Appendices**

- Appendix A MECP WWR Summary Table
- Appendix B Borehole Logs
- Appendix C SWRT Procedures and Results
- Appendix D Laboratory Certificates of Analysis
- Appendix E Construction Flow Rate Calculations



# 1 Introduction

## 1.1 Project Description

EXP Services Inc. (EXP) was retained by EXP – Transport Division to prepare a Hydrogeological Investigation Report associated with the proposed road development work in Mississauga as part of Bombardier Aerospace Project (Off-Site Work), Mississauga, Ontario (hereinafter referred to as the 'Site').

As we understand, Bombardier Inc. is planning to carry out some road development work in the City of Mississauga, as part of the Bombardier Aerospace project (Off-Site Work). The proposed hydrogeological investigation is required to be completed as part of the detail design process.

Exp understands that the proposed road development work will include road widening, pavement construction and Alstep Drive Extension (approximately 200 m) to meet Bramalea Road. It is also proposed to extend the existing 750 mm diameter storm sewer along the Alstep Drive underneath the proposed road extension. It is expected that the lowest invert elevation of the extended section of the storm sewer is approximately 168.8 meters above sea level (masl). The Site location plan is shown on Figure 1.

City of Mississauga / Region of Peel requires updating the hydrogeological investigation report, to meet the Agency's requirements and to consider the preferred design options for various sections of the proposed road development work. We understand that following alternative designs are selected as preferred options for various sections (Attachment 1):

EXP conducted a Geotechnical Investigation in conjunction with this investigation onsite. The pertinent information gathered from the noted investigation is utilized for this report.

# 1.2 Project Objectives

The main objectives of the Hydrogeological Investigation are as follows:

- Establish the local hydrogeological settings within the Site;
- Assess construction dewatering flow rates and potential impacts;
- Assess groundwater quality;
- Evaluate the permitting requirements (EASR) for dewatering and dewatering effluent disposal purposes;
- Prepare a Hydrogeological Investigation Reports; and
- Register an online record in the EASR, if required.

#### 1.3 Scope of Work

To achieve the investigation objectives, EXP has completed the following scope of work:

• Reviewed available geological and hydrogeological information for the Site; search water well records in the MECP database to find wells within 500 m of the project area;



\*ехр.

- Installed two (2) groundwater monitoring wells within the project area (as part of geotechnical drilling program), approximately 5 m deep, 50 mm diameter;
- Developed all four (4) monitoring wells and conducted Single Well Response Tests (SWRT) to assess hydraulic properties of the saturated soils at the Site;
- Conducted two (2) groundwater level surveys;
- Collected one (1) groundwater sample at a selected monitoring well location for analyses of parameters listed in the Regional Municipality of Peel Sanitary and Combined Sewer Use By-Law ;
- Evaluated the information collected during the field investigation program, including SWRT results, groundwater level measurements and groundwater water quality;
- Preparation of site plans, cross sections and groundwater contour mapping for the Site;
- Estimated construction dewatering flow rates using analytical methods;
- Evaluated requirement of an online registration in MECP EASR for construction dewatering;
- Evaluated potential dewatering related effects on the surrounding environment; and,
- Prepared a Hydrogeological Investigation Report.

The hydrogeological report will also address the requirements of the Regional Municipality of Peel / City of Mississauga requirements for disposal of dewatering effluent into their sewer system (storm / sanitary). The scope of work outlined above is prepared to assess dewatering and does not include a review of Environmental Site Assessments (ESA).

## 1.4 Review of Previous Reports

The following reports were reviewed as part of this Hydrogeological Investigation:

• EXP Services Inc. (June 19, 2020), Geotechnical Investigation and Pavement Condition Evaluation, Mississauga, Ontario, prepared for Bombardier Inc.

# 2 Hydrogeological Setting

## 2.1 Regional Setting

#### 2.1.1 Regional Physiography

The Site is within a physiographic region named the Peel Plain. The physiographic landform is known as the Bevelled Till Plains. The Peel Plain is surrounded by the South Slope which extends along the northern boundary of the Iroquois Plain (Chapman & Putnam, 2007).

The plain is the lake bottom of former glacial Lake Peel, which was created between the front of the ice-lobe and the Niagara Escarpment. The Peel Plain is a level-to-undulating area of clay soils. The topography of the Plain gradually slopes down southeast, toward Lake Ontario, following the topography of the underlying till. A calm lake environment resulted in the deposition of silts and clays, particularly in depressions of the till. These sediments are quite thin, which suggests Lake Peel had a brief existence.

#### 2.1.2 Regional Geology and Hydrogeology

The surficial geology can be described as clay to silt textured till, fine textured glaciolacustrine deposits (mainly silt and clay), and modern alluvial deposits of clay, silt, sand and gravel (Ministry of Northern Development and Mines, 2012). The surficial geology of the Site and surrounding areas is shown on Figure 2.

Bedrock in the project area primarily consists of interbedded shale, limestone, dolostone and siltstone, which belong to the Georgian Bay Formation, Upper Ordovician (Ministry of Northern Development and Mines, 2012).

Groundwater across the area flows southeast, towards Lake Ontario (Oak Ridges Moraine Groundwater Program, 2018). Local deviation from the regional groundwater flow pattern may occur in response to changes in topography and/or soils, as well as the presence of surface water features and/or existing subsurface infrastructure.

#### 2.1.3 Existing Water Well Survey

Water Well Records (WWRs) were compiled from the database maintained by the Ministry of the Environment, Conservation and Parks (MECP) and reviewed to determine the number of water wells documented within a 500-m radius of the Site boundaries. The locations of the MECP WWRs within 500 m of the Site are shown on Figure 3. A summary of the WWR is included in Appendix A.

The MECP WWR database lists forty-four (44) records within a 500 m radius from the Site boundary. No well records are identified onsite. The reported depths to groundwater ranged from approximately 3.0 m to 21.3 meters below ground surface (mbgs).

The database indicates that the offsite wells are at an approximate distance of approximately eight (8) m or greater from the Site boundary. All offsite wells were reportedly identified as monitoring and observation wells, test holes, dewatering wells, water supply wells, abandoned and/or listed with unknown use.

Six (6) water supply wells were identified as water supply wells within 500 m distance from the Site boundary. Well uses of all these water supply wells were given in the data base as livestock (1<sup>st</sup> well use) and domestic (2<sup>nd</sup> well use). The closest water supply well is located approximately 82 m away from the Site boundary. Based on the old dates of installation of the water supply wells (September 1959 to July 1960) and since the area is municipally serviced, it is unlikely that the noted water supply wells are still active.



## 2.2 Site Setting

#### 2.2.1 Site Topography

The Site is in an urban area. The topography is considered relatively flat, with a regional gradual southeasterly slope towards Etobicoke Creek and Lake Ontario. As indicated on the borehole logs included in Appendix B, the surface elevation of the Site ranges between approximately 172.4 to 175.6 meters above sea level (masl).

#### 2.2.2 Local Surface Water Features

The Site is located within the Etobicoke Creek watershed. No surface water features exist onsite. The nearest surface water features are two seasonal 1st order streams of Etobicoke Creek, located approximately 10 -20 meters south of the Site boundary. Etobicoke Creek is located approximately 400 m southwest and Spring Creek, a main branch of Etobicoke Creek is located approximately 400 m northeast of the Site boundary. Lake Ontario is approximately 15 km from the Site boundary to the southeast.

#### 2.2.3 Local Geology and Hydrogeology

A summary of subsurface soil stratigraphy is provided in the following paragraphs. The soil descriptions are based on the geotechnical investigation and pavement condition evaluation report (EXP, 2020). They are summarized for the hydrogeological interpretations. As such, the information provided in this section shall not be used for the construction design purposes.

The detailed soil profiles encountered in each borehole and the results of moisture content determinations are presented on the attached borehole logs (Appendix B). It should be noted that the soil boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations during drilling. These boundaries are intended to reflect approximate transition zones for the Hydrogeological Investigation and shall not be interpreted as exact planes of geological change.

The "Notes on Sample Description" preceding the borehole logs form an integral part of and should be read in conjunction with this report. The following is a brief description of the soil conditions encountered during the investigation.

Based on the results of the geotechnical investigation, the general subsurface soil stratigraphy consists of the following units from top to bottom:

#### Fill Materials

Fill materials were encountered below the topsoil. The fill typically consisted of clayey silt with trace contents of sand and gravel. Trace organic matters (rootlets and organics) were observed in this fill. This layer extended to depths varying from 0.5 to 1.6 m below the existing ground surface or to elevations ranging from 173.5 to 171.6 m.

The black to brown fill materials were in a loose to compact state of compaction as suggested by SPT N-values between 7 and 11 blows/0.3 m. The moisture contents within the fill were found to range from 13 to 24 percent of dry weight, indicating generally a moist condition.

#### Clayey Silt Till

Below the asphalt pavement structure or fills in all boreholes, the soil explored consisted of a layer of clayey silt till, extending to borehole termination depths between 2.0 and 4.7 m below the ground surface or to elevations ranging from approximately 173.6 to 167.7 m. It was found that this glacial till deposit contains some sand to sandy, and trace gravel.

Grain size distribution analyses were carried out in the geotechnical laboratory on the selected clayey silt till samples

°ехµ.

This brown to grey glacial till has a very stiff to hard consistency as suggested by the SPT N-values obtained in this stratum which varied from 19 to in excess of 50 blows/0.3 m. This deposit was moist, with natural moisture contents ranging from about 7 to 20 percent of dry weight.

The presence of cobbles and boulders should always be anticipated in the ice contact drift, owing to their mode of deposition.

The borehole and monitoring well locations are shown on Figure 4. Geological cross-sections were generated based on the available borehole logs completed as part of the previous and current investigations and shown on Figure 5 (cross section A-A'). Borehole logs used to generate both cross-sections are provided in Appendix B.



# 3 Results

# 3.1 Monitoring Well Details

The monitoring well network installed as part of the Geotechnical Investigation at the Site consists of the following:

Two (2) overburden monitoring wells (BH/MW 17 and BH/MW 20) were installed to depths of 4.5 m and 3.1 m, respectively

Diameter of both monitoring wells is 50 mm and were installed with a flush mount protective casing. Borehole logs and monitoring well installation details are provided in Appendix B. The monitoring well locations are shown on Figure 4.

## 3.2 Water Level Monitoring

As part of the Hydrogeological Investigation, static water levels in the monitoring wells installed onsite were recorded in two (2) monitoring events, May 12 and 19, 2020. A summary of all static water level data as it relates to the elevation survey is summarized in Table 3-1 below.

The groundwater elevation recorded in the intermediate wells ranged from 170.95 masl (1.45 mbgs at BH/MW 17 on May 12, 2020) to 171.28 masl (2.02 mbgs at BH/MW 20 on May 12, 2020).

| Monitoring<br>Well ID | Ground<br>Surface<br>Elevation<br>(masl) | Approximate<br>Full Well<br>Depth<br>(mbgs) | Minimum<br>GW<br>Elevation<br>(masl) | Maximum<br>GW<br>Elevation<br>(masl) | Unit | May 12, 2020 | May 19, 2020 |
|-----------------------|------------------------------------------|---------------------------------------------|--------------------------------------|--------------------------------------|------|--------------|--------------|
| BH/MW 17              | 172.4                                    | 4.5                                         | 170.95                               | 171.14                               | mbgs | 1.45         | 1.26         |
|                       | 172.4                                    | 4.5                                         | 170.95                               | 1/1.14                               | masl | 170.95       | 171.14       |
| BH/MW 20              | 172.2                                    | 2.1                                         | 171 05                               | 171 20                               | mbgs | 2.02         | 2.25         |
|                       | 173.3                                    | 3.1                                         | 171.05                               | 171.28                               | masl | 171.28       | 171.05       |

#### Table 3-1: Summary of Measured Groundwater Elevations

It should be noted that groundwater levels are expected to show seasonal fluctuations and vary in response to prevailing climate conditions. This may also affect the direction and rate of flow.

# 3.3 Hydraulic Conductivity Testing

Two (2) Single Well Response Tests (SWRT's) were completed on monitoring wells BH/MW 17 and BH/MW 20 on May 19, 2020. The tests were completed to estimate the saturated hydraulic conductivity (K) of the soils at the well screen depths.

The static water level within each monitoring well was measured prior to the start of testing. In advance of performing SWRTs, each monitoring well underwent development to remove fines introduced into the screens following construction. The development process involved purging of the monitoring wells to induce the flow of fresh formation water through the screen. Each monitoring well was permitted to fully recover prior to performing SWRTs.

Hydraulic conductivity values were calculated from the SWRT and constant rate test data as per Hvorslev's solution included in the Aqtesolv Pro. V.4.5 software package. The semi-log plots for normalized drawdown versus time are included in Appendix C.

A summary of the hydraulic conductivity (K) values estimated from the SWRTs are provided in Table 3-2.

\*ехр.

#### Table 3-2: Summary of Hydraulic Conductivity Testing

| Monitoring | Well Depth                | Screen Inte | erval (mbgs) | Soil Formation Screened                  | Estimated Hydraulic |  |  |  |  |  |
|------------|---------------------------|-------------|--------------|------------------------------------------|---------------------|--|--|--|--|--|
| Well       | (mbgs)                    | from        | to           |                                          | Conductivity (m/s)  |  |  |  |  |  |
| BH/MW 17   | 4.5                       | 1.5         | 4.5          | Clayey Silt Till                         | 1.2E-7              |  |  |  |  |  |
| BH/MW 20   | 3.1                       | 1.6         | 3.1          | Clayey Silt Till                         | 1.5E-7              |  |  |  |  |  |
|            | Highest Estimated K Value |             |              |                                          |                     |  |  |  |  |  |
|            |                           |             | Geometri     | netric Mean of Estimated K Values 1.3E-7 |                     |  |  |  |  |  |

SWRTs provide estimates of K for the geological formation in the immediate media zone surrounding the well screens and may not be representative of bulk formation hydraulic conductivity.

As shown in Table 3-2, the highest K for the tested water-bearing zones is estimated to be 1.5E-7 m/s, and the geometric mean of the K values is to be 1.3E- 7 m/s.

#### 3.4 Groundwater Quality

To assess the suitability for discharging pumped groundwater into the sewers owned by the City of Mississauga / Regional Municipality of Peel during dewatering activities, one (1) groundwater sample was collected from monitoring well BH/MW 17 on May 19, 2020 using a bladder pump. Prior to the collection of noted water sample, approximately three (3) standing well volumes of groundwater were purged from the noted well.

Table 3-3 summarizes exceedance(s) of the Sanitary and Combined (Table 1) and Storm (Table 2) Sewer Use By-Law parameters.

When compared to the City of Mississauga Sanitary and Combined Sewer Discharge Criteria (Table 1) no parameter exceedances were reported.

The following parameters exceeded the City of Mississauga Storm Sewer Discharge Criteria (Table 2): Total Suspended Solids and Total Manganese.

There were no exceedances of either By-Law due to the reported detection limit.

Analytical results are provided in Appendix D. A summary of the pertinent results is provided in Table 3-3.

|                              |       | City of Mississauga / Regio                                 |                                             | Concentration                                          |
|------------------------------|-------|-------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|
| Parameter                    | Units | Sanitary and Combined<br>Sewer Discharge Limit<br>(Table 1) | Storm Sewer Discharge<br>Limit<br>(Table 2) | Concentration<br>BH/MW 17<br>May 19, 2020<br>16<br>330 |
| Total Suspended Solids (TSS) | mg/L  | 350                                                         | 15                                          | 16                                                     |
| Total Manganese (Mn)         | μg/L  | 5,000                                                       | 50                                          | 330                                                    |

#### Table 3-3: Summary of Analytical Results

Bold – Exceeds City of Mississauga / Regional Municipality of Peel Sewer Discharge Limit (Table 2).



For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.

An agreement to discharge into the sewers owned by the City of Mississauga / Regional Municipality of Peel will be required prior to discharging dewatering effluent.

The Environmental Site Assessment Report(s) shall be reviewed for more information on the groundwater quality conditions at the Site.



# 4 Construction Dewatering Assessment

Exp understands that the proposed road development work will include road widening, pavement construction and Alstep Drive Extension (approximately 200 m) to meet Bramalea Road. Except for the excavation for the proposed storm sewer extension, other road development extension work needs shallow excavations, which will not extend into the saturated zone.

As per the drawings (31925-D) for the existing storm sewer along Alstep Drive, it is expected that the lowest invert elevation of the extended section of the storm sewer is approximately 168.8 masl, which is below the water table and some dewatering can be expected during construction phase.

It is assumed, as per preferred alternatives, that the lowest invert of the proposed extended section of the existing storm sewer along Alstep Drive does not change. And the preferred alternatives for road extension work do not include excavations extending to the saturated zone.

Table 4-1 presents the assumptions used to calculate the dewatering rate for the Site.

| Input Parameter                            | Assumption    | Units   | Notes                                                                                                                      |
|--------------------------------------------|---------------|---------|----------------------------------------------------------------------------------------------------------------------------|
| Ground Surface Elevation                   | 172.4 – 173.4 | masl    | Approximate elevation based on the borehole logs (BHs 17-20)                                                               |
| Highest groundwater elevation              | 172.3         | masl    | The highest recorded groundwater elevation measured across the Site plus 1 meter to account for some seasonal fluctuation. |
| Lowest Sewer Invert<br>Elevation           | 168.8         | masl    | Based on Architectural Drawing 31925-D                                                                                     |
| Dewatering Target<br>Elevation             | 167.8         | masl    | Assumed to be approximately 1.0 m below the lowest invert elevation                                                        |
| Bottom Elevation of Water-<br>Bearing Zone | 164.8         | masl    | Assumed (3 m below target water level)                                                                                     |
| Excavation Area<br>(Length x Width)        | 180 x 2       | (m x m) | Approximate length x width of Site for the proposed development                                                            |
| Hydraulic Conductivity (K)                 | 1.5E-7        | m/s     | Highest K-value for overburden                                                                                             |

#### **Table 4-1 Dewatering Estimate Assumptions**

## 4.1 Dewatering Flow Rate Estimate and Zone of Influence

The Dupuit equation for steady linear flow to both sides of an excavation through an unconfined aquifer resting on a horizontal impervious surface was used to obtain a flow rate estimate. Dewatering flow rate is expressed as follows:

$$Q_w = xK(H^2 - h^2)/Lo$$



Where:

- Qw = Rate of pumping  $(m^3/sec)$
- X = Length of excavation (m)
- K = Hydraulic conductivity (m/sec)
- H = Hydraulic head beyond the influence of pumping (static groundwater elevation) (m)
- h = Hydraulic head above the base of aquifer in an excavation (m)
- Lo = Distance of influence (m) for linear flow condition

It is expected that the initial dewatering rate will be higher in order to remove groundwater from within the overburden formation. The dewatering rates are expected to decrease once the target water level is achieved in the excavation footprint as groundwater will have been removed, primarily from storage resulting in lower seepage rates into the excavation.

## 4.2 Sichardt's Radius of Influence

The radius of influence (ROI) for the construction dewatering was calculated based on Sichardt's equation. This equation is used to predict the distance at which the drawdown resulting from pumping is negligible. This empirical formula was developed to provide representative flow rates using the steady state flow dewatering equations, as discussed below.

The estimated radius of influence (Ro) due to pumping is based on Sichardt's formula as follows:

$$\mathbf{R}_{\mathrm{o}} = \mathcal{C}(H - h)\sqrt{(K)}$$

Where:

- Ro = Estimated radius of influence (m)
- H = Hydraulic head in aquifer (static water level or saturated depth) (m)
- h = Dynamic water level (m)
- K = Hydraulic conductivity (m/sec)
- C = Constant (3,000) for radial flow condition

Based on Sichardt's formula and the highest K-value, the calculated zone of influence (Lo = Ro/2) is provided in Appendix E.

#### 4.3 Stormwater

Additional pumping capacity may be required to maintain dry conditions within the excavation during and following significant precipitation events. Therefore, the dewatering rates at the Site should also include removing stormwater from the excavation.

A 15 mm precipitation event was utilized for estimating the stormwater volume. The calculation for the stormwater volume is included in Appendix E.

During precipitation events greater than 15 mm (ex: 100-year storm), measures should be taken by the contractor to retain stormwater onsite in a safe manner to not exceed the allowable water taking and discharge limits, as necessary. It is noted that a two (2) year storm event over a 24-hour period is approximately 57 mm, which would correspond to approximately 20 m<sup>3</sup> of water from direct precipitation.

## 4.4 Results of Construction Dewatering Rate Estimate

For this assessment, it was assumed that the proposed construction plans include an excavation with shoring /trench boxes. Based on the assumptions provided in this report, the results of the dewatering rate estimate can be summarized as follows (Table 4.2):



| Excavation Area          | Dewatering Rate including Stormwater<br>Collection + Safety Factor (1.5)<br>m <sup>3</sup> /day | Distance of Influence<br>(m) |
|--------------------------|-------------------------------------------------------------------------------------------------|------------------------------|
| 100 m of Sewer Alignment | 40                                                                                              | 3                            |

#### Table 4.2: Summary of Construction Dewatering Rate Estimates

Note: It is assumed that a maximum length of 100 m of the trench excavation will be kept open during the construction phase

This peak dewatering flow rate does not account for flow from utility beddings and variations in hydrogeological properties beyond those encountered during this investigation. Localized dewatering may be required for pits (manhole pits) if they extend deeper than dewatering target which is not considered to be part of this assessment.

Based on the soil conditions, clayey silt till, unless sand seams embedded in this deposit are encountered at locations other than where drilling occurred, then the majority of construction water will be rainwater.

It is noted that the maximum flow estimate calculated with a high K value, provides a conservative estimate to account for higher than expected flow rates during the construction dewatering. Short-term (construction) dewatering calculations are presented in Appendix E.

No changes to the dewatering rates are expected due to preferred alternatives.

During construction phase, any groundwater including stormwater is expected to be controlled by pumping from local sumps excavated in the low areas.

Please note that the contractor id responsible to ensure that dry conditions are always maintained within the excavation.

#### 4.5 Construction MECP Water Taking Permit

In accordance with the Ontario Water Resources Act, if the water taking for the construction dewatering is more than 50 m<sup>3</sup>/day but less than 400 m<sup>3</sup>/day, then an online registration in the Environmental Activity and Sector Registry (EASR) with MECP will be required. If groundwater dewatering rates on-Site exceed 400 m<sup>3</sup>/day, a Category 3 Permit to Take Water (PTTW) will be required from the MECP.

It is recognized that the maximum flow estimate equation calculated with a high K-value, provides a conservative estimate to account for higher than expected flow rates during the construction dewatering. Based on the dewatering estimate of approximately 40 m<sup>3</sup>/day for 100 m stretch of excavation, an EASR will not be required to facilitate the construction dewatering program for the Site.



# 5 Environmental Impact

# 5.1 Surface Water Features

The Site is within the Etobicoke Creek watershed. No surface water features exist onsite. The nearest surface water features are two seasonal 1st order streams of Etobicoke Creek, located approximately 10 -20 meters south of the Site boundary. Etobicoke Creek is located approximately 400 m southwest and Spring Creek, a main branch of Etobicoke Creek is located approximately 400 m northeast of the Site boundary. Lake Ontario is approximately 15 km from the Site boundary to the southeast.

Due to the limited extent of zone of influence and the distance of the nearest surface water feature, no impacts to surface water features are expected during construction activities.

## 5.2 Groundwater Sources

Well Records from the MECP Water Well Record (WWR) Database were reviewed to determine the number of water supply wells present within a 500 m radius of the Site boundaries. Given that the dewatering zone of influence is less than 5 m from the dewatering area, no dewatering related impact is expected on the water wells in the area.

# 5.3 Geotechnical Considerations

The water taking should not have unacceptable interference on soils and surrounding engineering and underground structures (buildings, foundations, utilities etc.). A letter related to geotechnical issues as it pertains to the Site is required to be completed under a separate cover.

## 5.4 Groundwater Quality

It is our understanding that the potential discharge from the dewatering system during the construction will be directed to the municipal sewer system. As such, the quality of groundwater discharge is required to conform the City of Mississauga / Regional Municipality of Peel Sewer Use By-Law.

For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.

Construction dewatering may induce migration of contaminants within the zone of influence and beyond due to changing hydraulic gradients, hydrogeological conditions beyond Site boundaries and preferential pathways in utility beddings etc. The water quality sampling conducted as part of this assessment was conducted under static conditions. As a result. monitoring may be required during dewatering activities (short term) to monitor potential migration, and this should be performed more frequently during early dewatering stages.

It is noted that an agreement to discharge to the City of Mississauga / Regional Municipality of Peel will be required prior to discharging dewatering effluent.

The Environmental Site Assessment Report(s) shall be reviewed for more information on the groundwater quality conditions at the Site.



## 5.5 Well Decommissioning

In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required for all wells that are no longer in use.



# 6 Conclusions and Recommendations

Based on the findings of the Hydrogeological Investigation, the following conclusions and recommendations are provided:

- When compared to the City of Mississauga Sanitary and Combined Sewer Discharge Criteria (Table 1) no parameter exceedances were reported.
- The following parameters exceeded the City of Mississauga Storm Sewer Discharge Criteria (Table 2): Total Suspended Solids and Total Manganese..
- Based on the assumptions outlined in this report, the estimated peak dewatering pumping rate for proposed construction activities is approximately 40 m<sup>3</sup>/day. As the dewatering flow rate estimate is less than 50 m<sup>3</sup>/day, no EASR registration or permit application will be required to facilitate the construction dewatering program for the Site. Based on the soil conditions, clayey silt till, unless sand seams embedded in this deposit are encountered at locations other than where drilling occurred, then the majority of construction water will be rainwater.
- The construction dewatering volumes is based on the assumptions outlined in this report. Any variations in hydrogeological conditions beyond those encountered as part of this preliminary investigation may significantly influence the discharge volumes.
- A letter related to geotechnical issues as it pertains to the Site is required to be completed under a separate cover.
- It is noted that an agreement to discharge to the City of Mississauga / Regional Municipality of Peel will be required prior to discharging dewatering effluent.
- In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required for all wells that are no longer in use.

The conclusions and recommendations provided above should be reviewed in conjunction with the entirety of the report. They assume that the present design concept described throughout the report will proceed to construction. This report is solely intended for the construction dewatering assessment. Any changes to the design concept may result in a modification to the recommendations provided in this report.



# 7 Limitations

This report is based on a limited investigation designed to provide information to support an assessment of the current hydrogeological conditions within the study area. The conclusions and recommendations presented within this report reflect Site conditions existing at the time of the assessment. EXP must be contacted immediately if any unforeseen Site conditions are experienced during construction activities. This will allow EXP to review the new findings and provide appropriate recommendations to allow the construction to proceed in a timely and cost-effective manner.

Our undertaking at EXP, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the geoscience/engineering profession. No other warranty or representation, either expressed or implied, is included or intended in this report.

This report was prepared for the exclusive use of EXP – Transport Division. This report may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust that this information is satisfactory for your purposes. Should you have any questions or comments, please do not hesitate to contact this office.

Sincerely,

EXP Services Inc.

Jay Samarakkody, M.Phil., P. Geo. Senior Hydrogeologist Environmental Services

hant

Francois Chartier, M.Sc., P. Geo. Head of Hydrogeology Group Environmental Division

Reinhard Zapata Blosa, Ph.D., P. Geo. Senior Hydrogeologist Environmental Services



# 8 References

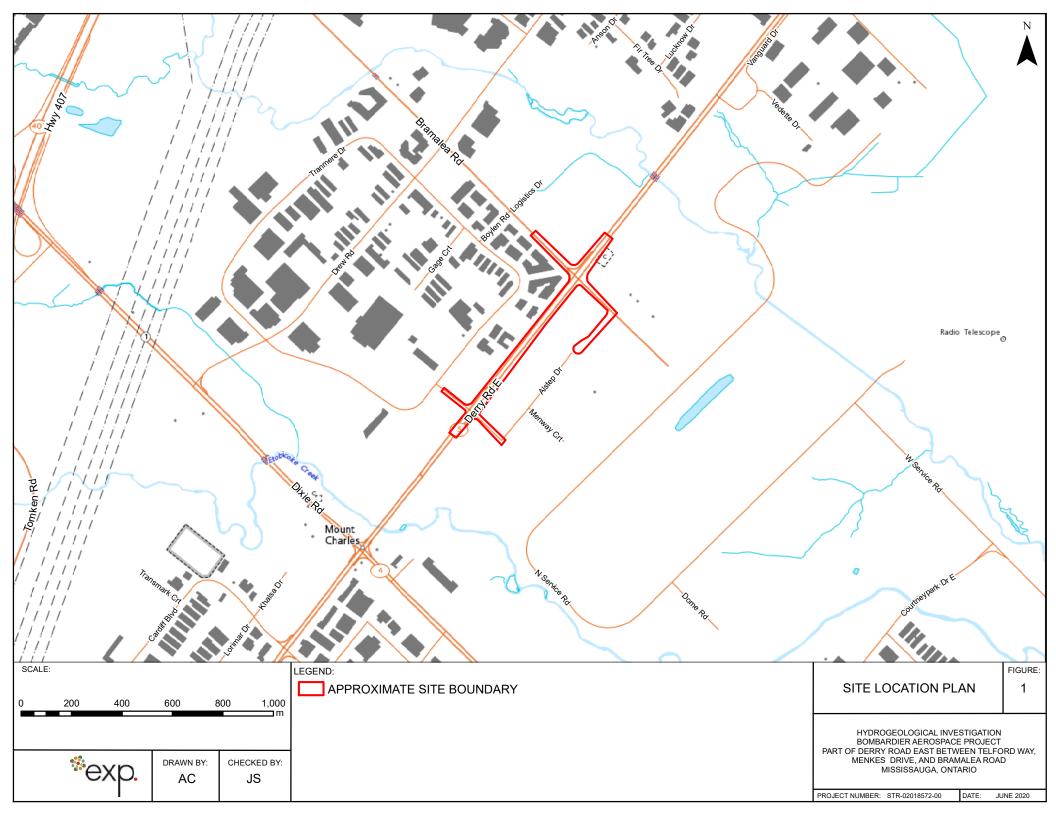
Cashman and Preene (2013) Groundwater Lowering in Construction, 2nd Edition.

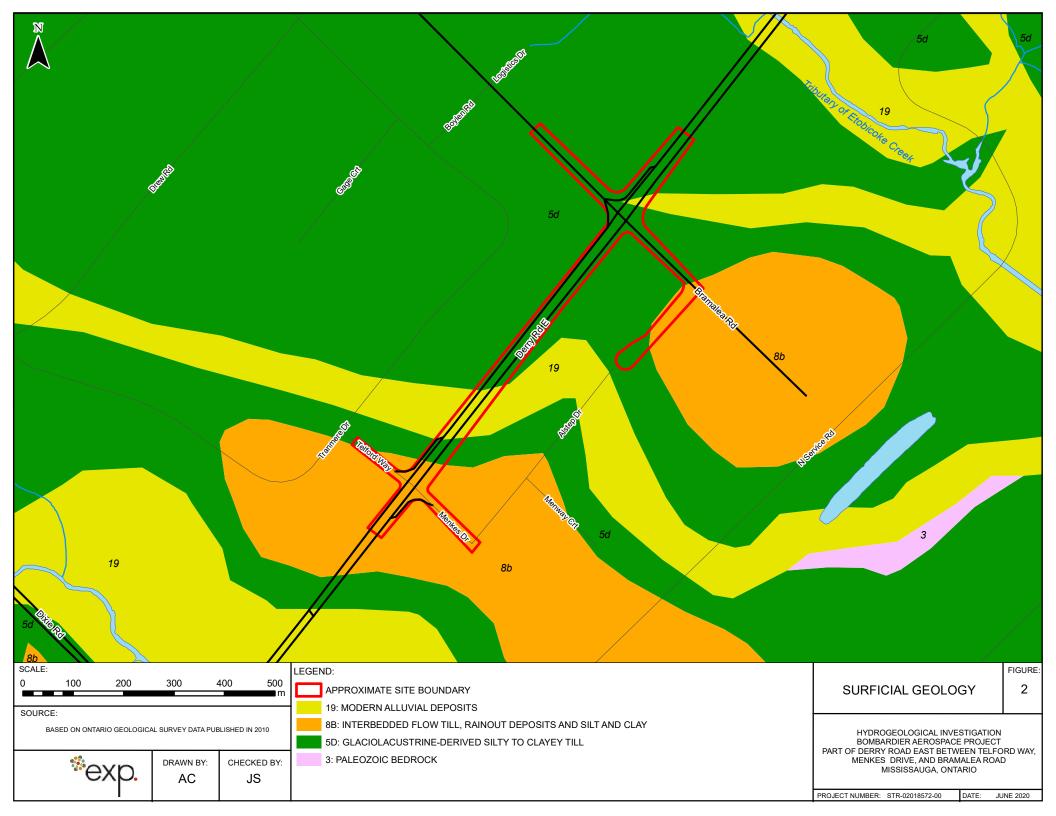
Chapman, L.J. and Putnam, D.F. (2007). Physiography of Southern Ontario, 3rd Edition, Ontario Geological Survey.

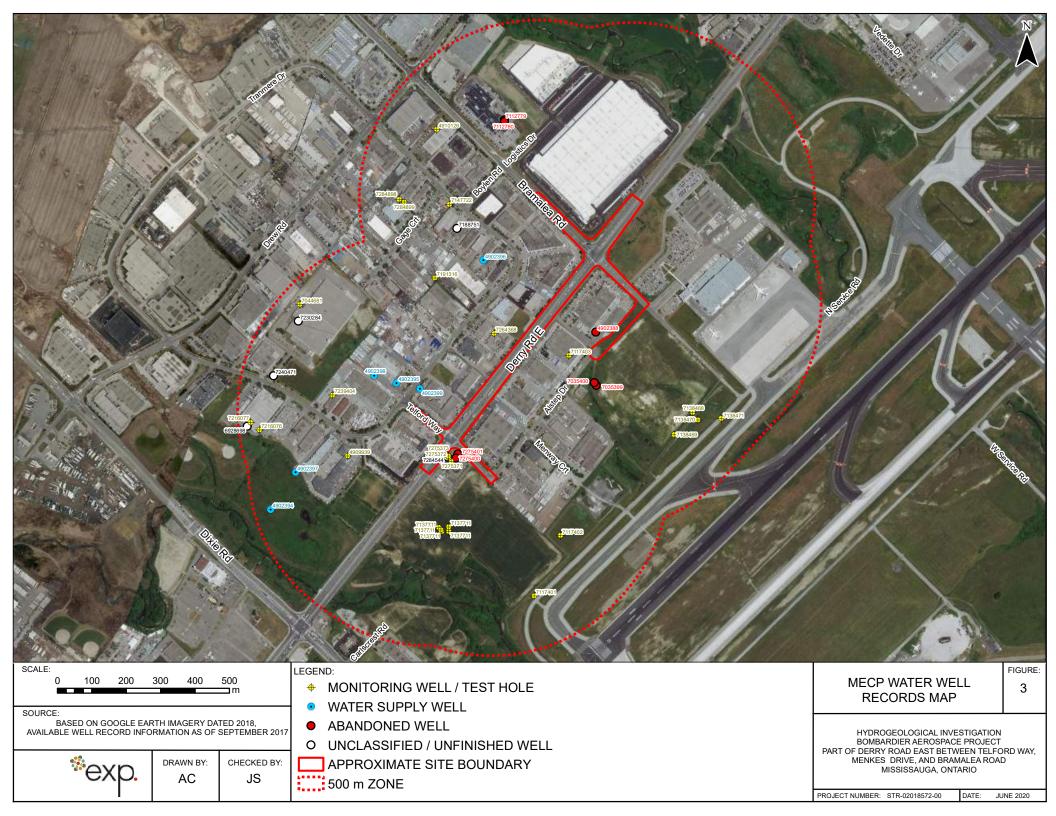
EXP Services Inc. (June 19, 2020), Geotechnical Investigation and Pavement Condition Eve, ADDRESS, Toronto, ON, prepared for Bombardier Inc.

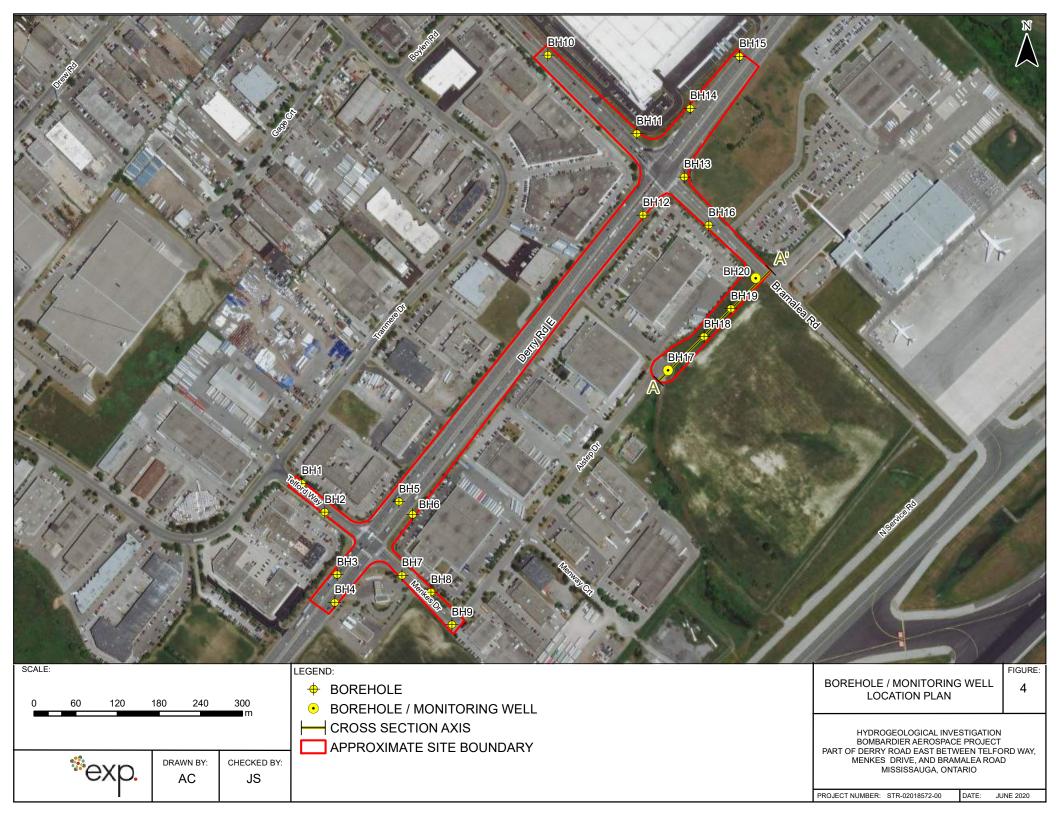
J.P. Powers, A.B. Corwin, P.C. Schmall, and W.E. Kaeck (2007). Construction Dewatering and Groundwater Control, Third Edition.

Ministry of Northern Development and Mines (May 2012). OGS Earth. Retrieved from http://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth.


Oak Ridges Moraine Groundwater Program. Accessed to the website (https://oakridgeswater.ca/) dated October 2018.





EXP Services Inc. Bombardier Aerospace Project (Off-Site Work), Mississauga, Ontario Hydrogeological Investigation BRM-02018572-00 October 29, 2021


**Figures** 







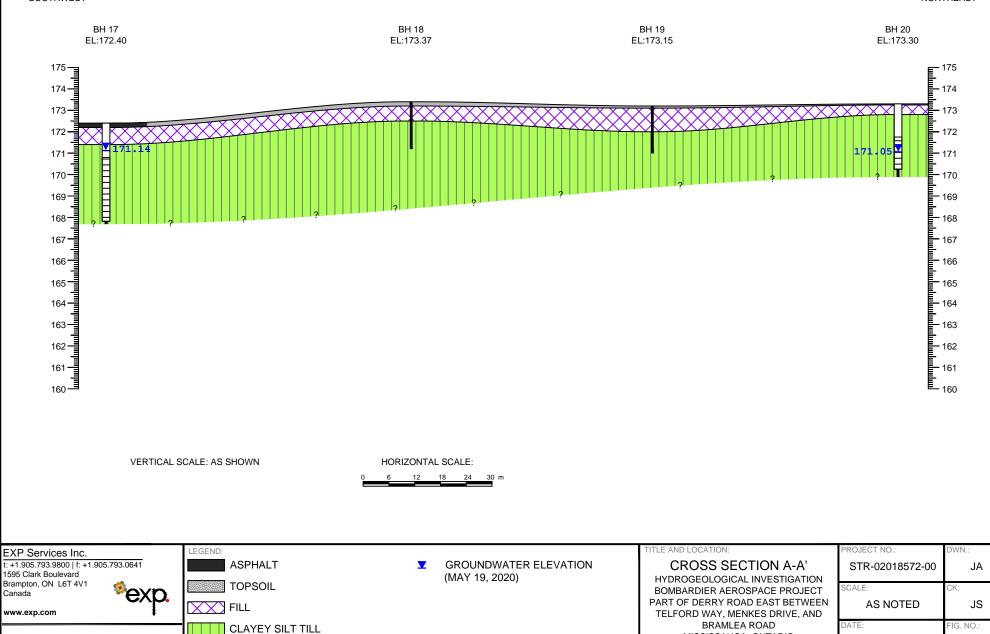




А SOUTHWEST

estigation\JUNE 2020\STR-02018572-00.dwg

Š -00/HG


201857

857

2000000/201

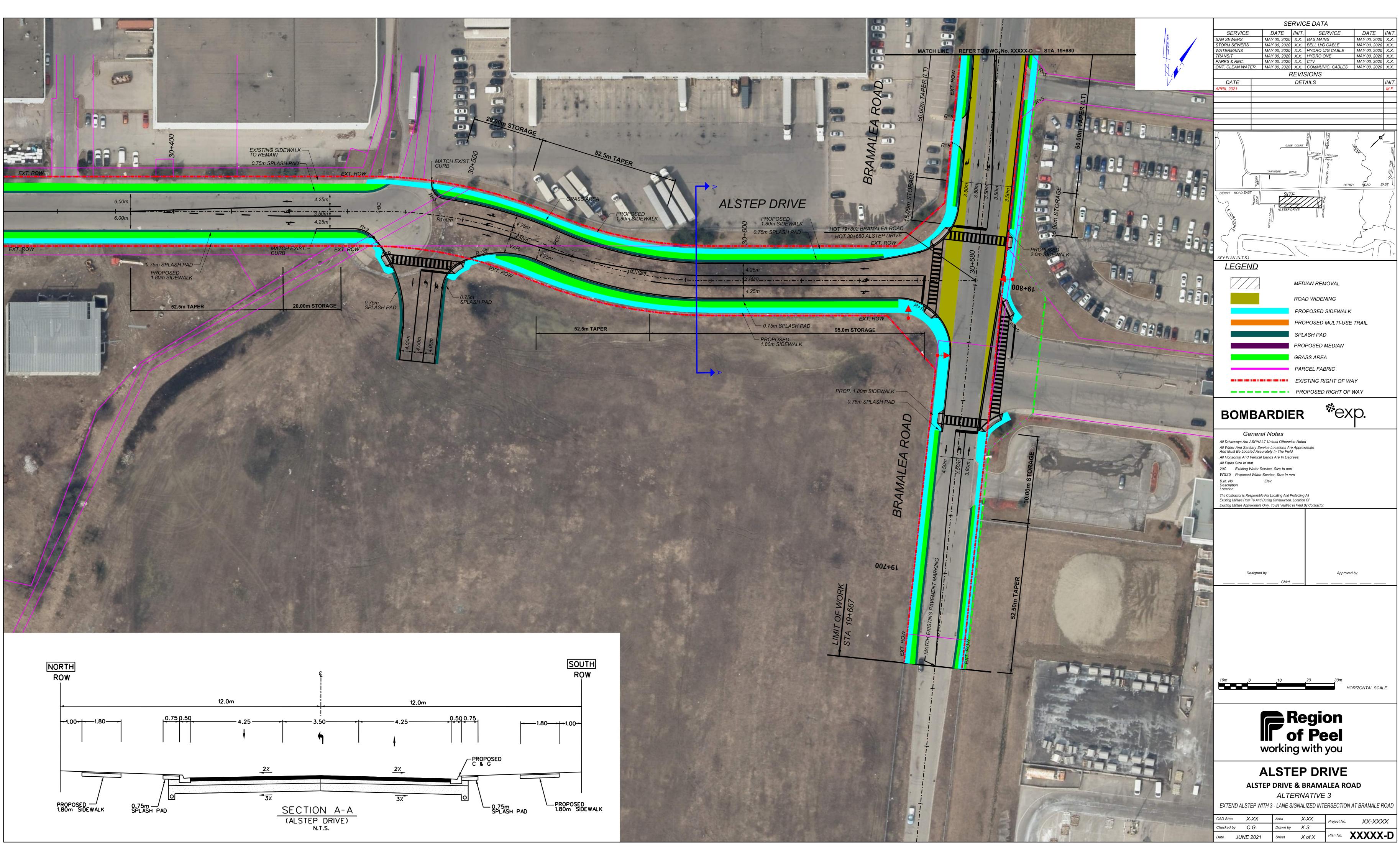
• BUILDINGS • EARTH & ENVIRONMENT • ENERGY •

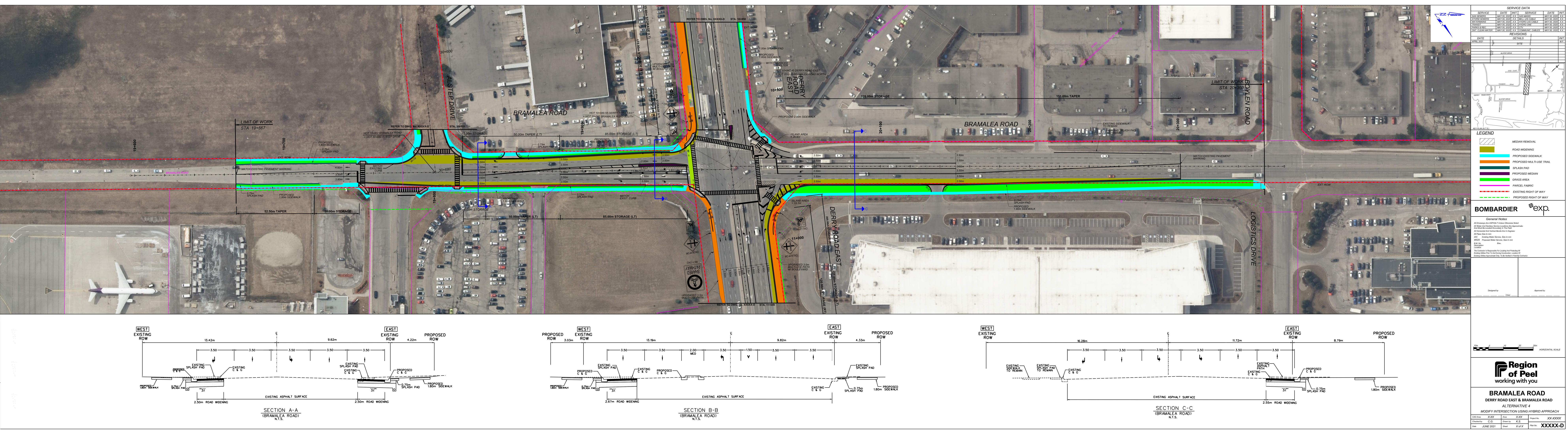
INDUSTRIAL
 INFRASTRUCTURE
 SUSTAINABILITY

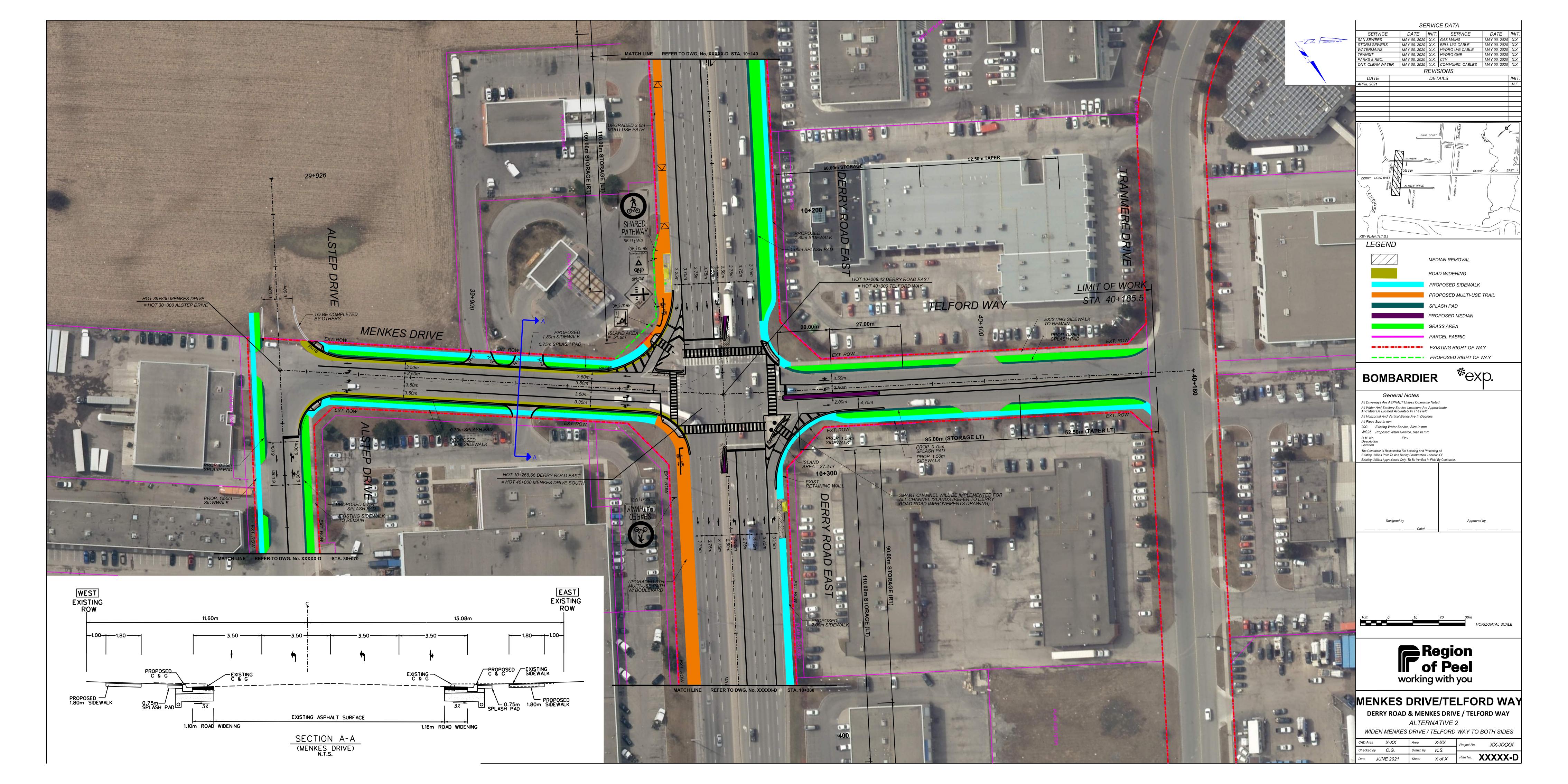


MISSISSAUGA, ONTARIO

**JUNE 2020** 


5


A'


EXP Services Inc. Bombardier Aerospace Project (Off-Site Work), Mississauga, Ontario Hydrogeological Investigation BRM-02018572-00 October 29, 2021

# Attachment 1 – Preferred Options









EXP Services Inc. Bombardier Aerospace Project (Off-Site Work), Mississauga, Ontario Hydrogeological Investigation BRM-02018572-00 October 29, 2021

# Appendix A – MECP WWR Summary Table



# Appendix A MECP Water Wells within 50 m of Site Centroid

|            |         |            |        |         |                      |                     | Off-Site    |                                       |                    |                          |            |                          |
|------------|---------|------------|--------|---------|----------------------|---------------------|-------------|---------------------------------------|--------------------|--------------------------|------------|--------------------------|
| BH ID      | WELL ID | DATE       | EAST83 | NORTH83 | ELEVATION<br>(m ASL) | STREET              | СІТҮ        | DISTANCE<br>FROM SITE<br>CENTROID (m) | FROM SITE FOUND 1s |                          | 2nd USE    | FINAL STATUS             |
| 10317230   | 4902388 | 8/12/1961  | 607722 | 4837510 | 173.3                |                     |             | 30.9                                  | 14.3               | Not Used                 |            | Abandoned-Quality        |
| 10317236   | 4902394 | 9/5/1959   | 606777 | 4836994 | 171.7                |                     |             | 451.5                                 | 16.8               | Livestock                | Domestic   | Water Supply             |
| 10317237   | 4902395 | 7/9/1960   | 607143 | 4837362 | 174.6                |                     |             | 82.2                                  | 21.3               | Livestock                | Domestic   | Water Supply             |
| 10317238   | 4902396 | 10/12/1959 | 607395 | 4837719 | 174.0                |                     |             | 226.1                                 | 18.3               | Livestock                | Domestic   | Water Supply             |
| 10317239   | 4902397 | 10/21/1959 | 606849 | 4837102 | 174.0                |                     |             | 362.9                                 | 7.3                | Livestock                | Domestic   | Water Supply             |
| 10317240   | 4902398 | 7/1/1960   | 607078 | 4837384 | 174.7                |                     |             | 143.8                                 | 21.3               | Livestock                | Domestic   | Water Supply             |
| 10317241   | 4902399 | 7/15/1960  | 607211 | 4837345 | 174.6                |                     |             | 83.2                                  | 18.3               | Livestock                | Domestic   | Water Supply             |
| 11323672   | 4909939 | 8/9/2004   | 607000 | 4837150 | 175.6                | 1890 ALSTEP DR      | BRAMPTON    | 213.9                                 | 3.0                | Not Used                 |            | Observation Wells        |
| 1001944966 | 7117401 |            | 607542 | 4836742 | 172.6                | 6767 DEVAND DRIVE   |             | 348.4                                 |                    | Monitoring and Test Hole |            | Monitoring and Test Hole |
| 1001944969 | 7117402 |            | 607619 | 4836918 | 173.0                | 6767 DEVAND         |             | 250.7                                 |                    | Monitoring and Test Hole |            | Monitoring and Test Hole |
| 1002926827 | 7138468 | 12/7/2009  | 608003 | 4837277 | 171.9                | GTAA(AIRPORT)       | Mississauga | 305.4                                 |                    | Monitoring               |            | Observation Wells        |
| 1002926830 | 7138469 | 12/17/2009 | 607949 | 4837212 | 172.1                | GTAA (AIRPORT)      | Mississauga | 310.4                                 |                    | Monitoring and Test Hole |            | Monitoring and Test Hole |
| 1002926833 | 7138470 | 12/17/2009 | 608018 | 4837255 | 172.1                | GTAA                | Mississauga | 331.7                                 |                    | Monitoring and Test Hole |            | Monitoring and Test Hole |
| 1002926836 | 7138471 | 12/17/2009 | 608086 | 4837259 | 169.4                | GTAA                | Mississauga | 379.1                                 |                    | Monitoring and Test Hole |            | Monitoring and Test Hole |
| 1003100554 | 7147722 | 6/9/2010   | 607296 | 4837883 | 174.6                | 7170 TRANMORE DRIVE | MISSISSAUGA | 238.3                                 |                    | Test Hole                |            | Test Hole                |
| 1004706682 | 7216076 | 12/23/2013 | 606744 | 4837226 | 176.0                | 7785 TRANMERE DRIVE | MISSISSAUGA | 439.4                                 |                    | Monitoring and Test Hole |            | Monitoring and Test Hole |
| 1004706685 | 7216077 | 12/23/2013 | 606718 | 4837248 | 176.1                | 7785 TRANMERE DRIVE | MISSISSAUGA | 463.1                                 |                    | Monitoring and Test Hole |            | Monitoring and Test Hole |
| 1005320058 | 7239404 | 2/19/2015  | 606957 | 4837327 | 175.9                | 7840 TRANMERE DR    | Mississauga | 227.5                                 |                    | Test Hole                |            |                          |
| 1006038590 | 7264368 | 5/13/2016  | 607426 | 4837507 | 174.5                | 7013 TRANMERE DR.   | MISSISSAUGA | 284.9                                 | 3.1                | Monitoring               |            | Observation Wells        |
| 1006293315 | 7275371 | 10/14/2016 | 607301 | 4837134 | 175.3                | 1700 DERRY RD EAST  | Mississauga | 24.1                                  |                    | Monitoring and Test Hole |            | Test Hole                |
| 1006293318 | 7275372 | 10/14/2016 | 607294 | 4837146 | 175.1                | 1700 DERRY RD EAST  | Mississauga | 10.9                                  |                    | Monitoring and Test Hole |            | Test Hole                |
| 1006293321 | 7275373 | 10/14/2016 | 607293 | 4837150 | 175.0                | 1700 DERRY RD EAST  | Mississauga | 7.5                                   |                    | Test Hole                | Municipal  | Observation Wells        |
| 1006293402 | 7275400 | 10/19/2016 | 607321 | 4837155 | 174.7                | 1700 DERRY RD EAST  | Mississauga | 11.1                                  |                    | Monitoring and Test Hole |            | Abandoned-Other          |
| 1006293405 | 7275401 | 10/14/2016 | 607315 | 4837143 | 175.0                | 1700 DERRY RD EAST  | Mississauga | 23.7                                  |                    | Monitoring and Test Hole |            | Abandoned-Other          |
| 1006379341 | 7284898 | 3/6/2017   | 607150 | 4837897 | 176.2                | 7210 TRANMERE RD    | Mississauga | 383.7                                 |                    | Test Hole                | Monitoring | Monitoring and Test Hole |
| 1006379344 | 7284899 | 3/6/2017   | 607165 | 4837889 | 176.0                | 7210 TRANMERE RD    | Mississauga | 368.8                                 |                    | Test Hole                | Monitoring | Monitoring and Test Hole |
| 11555360   | 4910126 | 11/23/2005 | 607259 | 4838101 | 177.0                | 7225 BRAMALEA RD    | MISSISSAUGA | 340.4                                 |                    | Not Used                 |            | Observation Wells        |
| 11767167   | 7044681 | 5/26/2007  | 606861 | 4837591 | 176.2                | 7830 TRANMERE RD    | TORONTO     | 442.9                                 |                    | Not Used                 |            | Observation Wells        |
| 1002918863 | 7137711 | 9/1/2009   | 607294 | 4836930 | 175.7                | 1700 DERRY RD.      | Mississauga | 185.3                                 |                    | Monitoring               |            | Test Hole                |
| 1003247301 | 7137711 | 9/1/2009   | 607265 | 4836942 | 176.2                | 1700 DERRY RD.      | Mississauga | 156.9                                 |                    | Monitoring               |            | Test Hole                |
| 1003247310 | 7137711 | 9/1/2009   | 607274 | 4836930 | 175.8                | 1700 DERRY RD.      | Mississauga | 170.4                                 |                    | Monitoring               |            | Test Hole                |

| Off-Site   |         |            |        |         |                      |                       |               |                                       |                           |            |         |                          |
|------------|---------|------------|--------|---------|----------------------|-----------------------|---------------|---------------------------------------|---------------------------|------------|---------|--------------------------|
| BH ID      | WELL ID | DATE       | EAST83 | NORTH83 | ELEVATION<br>(m ASL) | STREET                | CITY          | DISTANCE<br>FROM SITE<br>CENTROID (m) | WATER<br>FOUND<br>(m BGS) | 1st USE    | 2nd USE | FINAL STATUS             |
| 1003247319 | 7137711 | 9/1/2009   | 607294 | 4836944 | 176.1                | 1700 DERRY RD.        | Mississauga   | 162.4                                 |                           | Monitoring |         | Test Hole                |
| 1003247328 | 7137711 | 9/1/2009   | 607271 | 4836935 | 176.0                | 1700 DERRY RD.        | Mississauga   | 164.9                                 |                           | Monitoring |         | Test Hole                |
| 1001832986 | 7112779 | 9/12/2008  | 607456 | 4838128 | 176.0                | 2025 LOGISTICS DR.    | MISSISSAUGA   | 231.0                                 |                           |            |         | Abandoned-Other          |
| 1001832989 | 7112780 | 9/12/2008  | 607456 | 4838123 | 176.0                | 2025 LOGISTICS        | MISSISSAUGA   | 226.5                                 |                           |            |         | Abandoned-Other          |
| 1001944972 | 7117403 | 12/19/2008 | 607643 | 4837442 | 171.6                | 6767 DEVAND DRIVE     |               | 61.4                                  |                           |            |         | Monitoring and Test Hole |
| 1004202114 | 7191316 | 10/23/2012 | 607254 | 4837668 | 175.2                | 1900 GAGE COURT       | Mississauga   | 306.3                                 |                           |            |         | Observation Wells        |
| 11760859   | 7035399 | 7/18/2006  | 607723 | 4837355 | 171.4                | 1890 ALSTEP DRIVE     | MISSISSAUGA   | 78.5                                  |                           |            |         | Abandoned-Other          |
| 11760860   | 7035400 | 9/18/2006  | 607717 | 4837363 | 171.3                | 1890 ALSTEP DRIVE     | MISSISSAUGA   | 68.0                                  |                           |            |         | Abandoned-Other          |
| 11327667   | 6928698 | 2/20/2005  | 606709 | 4837236 | 176.7                | 147 WEST BEAVER CREEK | RICHMOND HILL | 473.6                                 |                           |            |         |                          |
| 1004197605 | 7188751 | 5/23/2012  | 607318 | 4837812 | 174.3                |                       |               | 232.9                                 |                           |            |         |                          |
| 1005183651 | 7230284 | 7/29/2014  | 606857 | 4837542 | 175.8                |                       |               | 415.0                                 |                           |            |         |                          |
| 1005329946 | 7240471 | 3/30/2015  | 606785 | 4837383 | 176.0                |                       |               | 407.7                                 |                           |            |         |                          |
| 1006376978 | 7284544 | 3/7/2017   | 607291 | 4837146 | 175.1                |                       |               | 8.6                                   |                           |            |         |                          |

EXP Services Inc. Bombardier Aerospace Project (Off-Site Work), Mississauga, Ontario Hydrogeological Investigation BRM-02018572-00 October 29, 2021

Appendix B – Borehole Logs



# Notes on Sample Descriptions and Soil Types

1. All sample descriptions included in this report follow the Canadian Foundations Engineering Manual soil classification system. This system follows the standard proposed by the International Society for Soil Mechanics and Foundation Engineering. Laboratory grain size analyses provided by **exp** also follow the same system. Others may use different classification systems; one such system is the Unified Soil Classification. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.

|                   |       |                    |       |      |        | ISSN     | MFE SOI  | LO  | CLASSIF  | FICATIO | DN     | [      |        |          |          |   |  |  |
|-------------------|-------|--------------------|-------|------|--------|----------|----------|-----|----------|---------|--------|--------|--------|----------|----------|---|--|--|
| CLAY              |       |                    | SILT  |      |        | SAND     |          |     |          |         | GRAVEL |        |        | COBBLES  | BOULDERS |   |  |  |
|                   |       | FINE MEDIUM COARSE |       |      |        | FINE     | MEDIUM   |     | COARSE   | FINE    |        | MEDIUM | COARSE |          |          |   |  |  |
|                   | 0.000 |                    | 0.007 |      |        | <i>.</i> | 2        |     |          |         |        |        | 0      | <u> </u> |          | 0 |  |  |
|                   | 0.002 |                    | 0.006 | 0.02 | 0.0    | 6 0      | .2       | 0.6 | b 2      | 2.0     | 6.0    | ) 2    | 0      | 60       | 20       | 0 |  |  |
|                   |       |                    |       |      |        |          |          | _   |          |         |        | ~      |        |          |          |   |  |  |
|                   |       |                    |       |      | EQUIVA | LENT G   | RAIN DIA | MF  | TER IN M | ILLIMET | ER     | .S     |        |          |          |   |  |  |
|                   |       |                    |       |      |        |          |          |     |          |         |        |        |        |          |          |   |  |  |
| CLAY (PLASTIC) TO |       |                    |       |      |        | FINE     |          | ME  | DIUM     | COARSE  | F      | INE    | COARSE |          |          | 1 |  |  |
| SILT (NONPLASTIC) |       |                    |       |      |        |          |          | SAN | ND       |         |        | GRA    | VEL    |          |          |   |  |  |

- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of

till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

4. Excerpt from "OHSA Regulations for Construction Projects," Part III, Section 226:

#### • Soil Types

Type 1 Soil

- a) is hard, very dense and only able to be penetrated with difficulty by a small sharp object;
- b) has a low natural moisture content and a high degree of internal strength;
- c) has no signs of water seepage; and
- d) can be excavated only by mechanical equipment.

#### Type 2 Soil

- a) is very stiff, dense and can be penetrated with moderate difficulty by a small sharp object;
- b) has a low to medium natural moisture content and a medium degree of internal strength; and
- c) has a damp appearance after it is excavated.

Type 3 Soil

- a) is stiff to firm and compact to loose in consistency or is previously excavated soil;
- b) exhibits signs of surface cracking;
- c) exhibits signs of water seepage;
- d) if it is dry, may run easily into a well-defined conical pile; and
- e) has a low degree of internal strength.

Type 4 Soil

- a) is soft to very soft and very loose in consistency, very sensitive and upon disturbance is significantly reduced in natural strength;
- b) runs easily or flows, unless it is completely supported before excavating procedures;
- c) has almost no internal strength;
- d) is wet or muddy; and
- e) exerts substantial fluid pressure on its supporting system.

O. Reg. 213/91, s. 226

| Project No.<br>Project:<br>Location:   | STR-02018572-00<br>Geotechnical Investigation<br>Mississauga, Ontario                | n and Pa         | ave       | eme                                           | nt A                       | <u>na</u>  | aly     | sis | 3          |   |    |   |    |                      |                         |                             | Dra<br>S                                             |                         | -               |                     |   |             | of _                      |
|----------------------------------------|--------------------------------------------------------------------------------------|------------------|-----------|-----------------------------------------------|----------------------------|------------|---------|-----|------------|---|----|---|----|----------------------|-------------------------|-----------------------------|------------------------------------------------------|-------------------------|-----------------|---------------------|---|-------------|---------------------------|
| Date Drilled:<br>Drill Type:<br>Datum: | Apr. 29, 2020<br>Auger Drill - Solid<br>Geodetic                                     |                  |           | Auger<br>SPT (I<br>Dynan<br>Shelby<br>Field \ | N) Val<br>nic Co<br>7 Tube | ue<br>ne ' |         |     |            | 0 |    |   |    | Na<br>Pla<br>Ur<br>% | atura<br>astic<br>ndrai | I Mo<br>and<br>ned<br>in at | le Va<br>isture<br>I Liqu<br>Triax<br>t Failu<br>ter | e<br>iid Lii<br>tial a' | mit             | ding                | F | ∠<br>×<br>€ | <b>.</b><br>0             |
| Soli/Rock                              | Soil Description                                                                     | ELEV.            | Depth (m) | Shea                                          | 20<br>Ir Stre              |            | 40<br>1 |     | Valu<br>60 |   | 8  | k | Pa |                      | 2<br>Nat<br>Atterb      | 25<br>ural<br>berg          | Moist<br>Limits                                      | 50<br>ture C<br>s (%    | Conte<br>Dry V  | 75<br>nt %<br>Veigh |   | Sample      | Natu<br>Un<br>Wei<br>kN/i |
|                                        | 0 mm TOPSOIL<br>: clayey silt, trace sand, trace<br>el, trace rootlets, brown, moist | 174.41<br>~174.3 | 0         |                                               |                            |            |         |     |            |   |    |   |    |                      |                         |                             | ×                                                    |                         |                 | 30                  |   |             |                           |
|                                        | YEY SILT TILL: some sand to<br>ly, trace gravel, brown, moist                        | ~173.3           | 1         |                                               |                            |            |         |     |            |   |    |   |    |                      |                         |                             | ×                                                    |                         |                 |                     |   |             |                           |
| END                                    | OF BOREHOLE                                                                          | ~172.4           | 2         |                                               |                            |            |         |     |            |   |    |   |    |                      |                         |                             |                                                      |                         |                 |                     |   |             |                           |
|                                        |                                                                                      |                  |           |                                               |                            |            |         |     |            |   |    |   |    |                      |                         |                             |                                                      |                         |                 |                     |   |             |                           |
|                                        |                                                                                      |                  |           |                                               |                            |            |         |     |            |   |    |   |    |                      |                         |                             |                                                      |                         |                 |                     |   |             |                           |
| <sup>*</sup> ex                        |                                                                                      | ]                | _1        |                                               |                            |            | 11      |     |            |   | [] |   | Or | Ela<br>T             | apse<br>Time<br>mple    |                             | n                                                    |                         | Wa<br>Lev<br>(m | /el<br>1)           |   |             | ble Op<br>to (m<br>1.5    |

I

| Project No.<br>Project:<br>Location:                               | STR-02018572-00<br>Geotechnical Investigatio<br>Mississauga, Ontario | D <b>G O</b><br>n and Pa       |                               |                         |                                             |                     |                     |              | le | E   | 3H                                |                                                                                |                           |                                                |             | 3<br>of _1                                     |
|--------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------|-------------------------------|-------------------------|---------------------------------------------|---------------------|---------------------|--------------|----|-----|-----------------------------------|--------------------------------------------------------------------------------|---------------------------|------------------------------------------------|-------------|------------------------------------------------|
| Date Drilled:<br>Drill Type:<br>Datum:                             | Apr. 29, 2020<br>Auger Drill - Solid<br>Geodetic                     |                                | _                             | SPT (<br>Dynai<br>Shelb | r Sam<br>(N) Va<br>mic Co<br>oy Tub<br>Vane | ilue<br>one Te<br>e | est                 | (            |    |     | Natur<br>Plasti<br>Undra<br>% Str | oustible Va<br>al Moistur<br>c and Liq<br>ained Tria<br>ain at Fai<br>trometer | re<br>uid Limi<br>xial at | -                                              | ⊥<br>×<br>€ | <b>(</b><br>0                                  |
|                                                                    | Soil Description<br>0 mm ASPHALT<br>: sand and gravel, trace silt,   | ELEV.<br>m<br>173.98<br>~173.8 | <ul> <li>Depth (m)</li> </ul> | She                     | 20<br>ear Stre                              | 2<br>ength          | PT (N '<br>10<br>00 | Value)<br>60 | 80 | kPa |                                   |                                                                                | 50                        | ading (ppm<br>75<br>htent %<br>y Weight)<br>30 | Sample      | Natural<br>Unit<br>Weight<br>kN/m <sup>3</sup> |
| brow                                                               | YEY SILT TILL: some sand to<br>ly, trace gravel, brown, moist        | ~173.0                         | 1                             |                         |                                             |                     |                     |              |    |     |                                   |                                                                                |                           |                                                |             | -                                              |
| B<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | OF BOREHOLE                                                          | ~172.0                         | 2                             |                         |                                             |                     |                     |              |    |     |                                   |                                                                                |                           |                                                |             | -                                              |
|                                                                    |                                                                      |                                |                               |                         |                                             |                     |                     |              |    |     |                                   |                                                                                |                           |                                                |             |                                                |
|                                                                    |                                                                      |                                |                               |                         |                                             |                     |                     |              |    |     |                                   |                                                                                |                           |                                                |             |                                                |
|                                                                    |                                                                      |                                |                               |                         |                                             |                     |                     |              |    |     | Elapso                            | ed                                                                             | 1                         | Vater<br>_evel<br>(m)                          | H           | ole Open<br>to (m)                             |
| *ex                                                                | p.                                                                   |                                |                               |                         |                                             |                     |                     |              |    | 01  | n comp                            | letion                                                                         | _                         | dry                                            |             | open                                           |

| Project No.<br>Project:<br>Location:   | STR-02018572-00<br>Geotechnical Investigatio<br>Mississauga, Ontario                                                                             | D <b>G O</b><br>n and Pa                                             |             |                   |                                        |                    |             |     |           | 16  | 9 |     | 31                         | <b>-</b>                   |                                                              |                       |                 |           |   |             | 4<br>of _1                                     |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------|-------------------|----------------------------------------|--------------------|-------------|-----|-----------|-----|---|-----|----------------------------|----------------------------|--------------------------------------------------------------|-----------------------|-----------------|-----------|---|-------------|------------------------------------------------|
| Date Drilled:<br>Drill Type:<br>Datum: | Apr. 27, 2020<br>Auger Drill - Solid<br>Geodetic                                                                                                 |                                                                      | _           | SPT<br>Dyn<br>She | er Sa<br>(N)<br>amic<br>Iby T<br>d Var | Valu<br>Con<br>ube | ie<br>Ie Te | est | -         | D I |   |     | Natu<br>Plas<br>Und<br>% S | ural N<br>stic ar<br>raine | ible Va<br>Ioistur<br>nd Liqu<br>d Tria:<br>at Fail<br>neter | re<br>uid L<br>kial a | imit            | lding     | F | □<br>×<br>€ | -0                                             |
| FILL<br>brow                           | Soil Description<br>0 mm ASPHALT<br>: sand and gravel, trace silt,<br>/n, moist<br>YEY SILT TILL: some sand to<br>dy, trace gravel, brown, moist | ELEV.<br>m<br>175.18<br>~175.1<br>-<br>~<br>175.1<br>-<br>~<br>175.1 | 0 Depth (m) | Sr                |                                        |                    | 2<br>gth    |     | ue)<br>60 |     |   | kPa |                            | 25                         | al Mois<br>g Limit                                           | 50                    | Conte<br>Dry V  | 75        |   | Sample      | Natural<br>Unit<br>Weight<br>kN/m <sup>3</sup> |
|                                        | OF BOREHOLE                                                                                                                                      | ~173.2                                                               | 2           |                   |                                        |                    |             |     |           |     |   |     |                            |                            |                                                              |                       |                 |           |   |             |                                                |
| *ex                                    | p.                                                                                                                                               |                                                                      |             |                   |                                        |                    |             |     |           |     |   |     | Elap                       | ne                         | on                                                           |                       | Wa<br>Lee<br>(n | vel<br>1) |   |             | le Open<br>to (m)<br>open                      |

| roject:<br>ocation: | Geotechnical Investigation<br>Mississauga, Ontario | DG O   |           |                   |       |   |             |             |               |             |     |              | _         |                                 |   |                       | 1  |        | of _              |
|---------------------|----------------------------------------------------|--------|-----------|-------------------|-------|---|-------------|-------------|---------------|-------------|-----|--------------|-----------|---------------------------------|---|-----------------------|----|--------|-------------------|
| ate Drilled:        | Apr. 27, 2020                                      |        |           | Auger             |       |   |             |             | _             | $\boxtimes$ |     |              |           | le Vap<br>bisture               |   | leadir                | ng | □<br>× |                   |
| rill Type:          | Auger Drill - Solid                                |        |           | SPT (N<br>Dynam   |       |   | est         |             | $\frac{0}{0}$ | Ø           |     |              |           | l Liqui<br>Triaxi               |   | it                    | H  |        | -0                |
| atum:               | Geodetic                                           |        |           | Shelby<br>Field V |       |   |             |             |               | S           |     | % St         |           | t Failu                         |   |                       |    | ⊕      |                   |
| Soil/Rock<br>Symbol | Soil Description                                   | ELEV.  | Depth (m) | Shear             | 20    | 4 | PT (N<br>10 | Value<br>60 |               | 80          | kPa |              | 25        | e Vapo<br>5<br>Moistu<br>Limits | 0 | 75                    |    | Sample | Natu<br>Ur<br>Wei |
|                     | 5 mm ASPHALT                                       | 175.57 | o De      | Silea             | Stier | - | 00          |             |               | 200         | кга |              | 10        | 2                               |   | 30                    |    | S      | kN/               |
| Fill                | : sand and gravel, trace silt,                     | ~175.4 |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    | Н      |                   |
| brow                | ın, moist                                          |        |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     | ×            |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        | 1         |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     | YEY SILT TILL: some sand to                        | ~174.4 |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    | H      |                   |
| sand                | ly, trace gravel, brown, moist                     | 4      |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     |              |           | (                               |   |                       |    |        |                   |
|                     |                                                    | ~173.6 |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
| END                 | OF BOREHOLE                                        |        | 2         |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       | - |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       | - |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     |              |           |                                 |   |                       |    |        |                   |
|                     |                                                    |        |           |                   |       |   |             |             |               |             |     | Elaps<br>Tim | sed<br>ie |                                 |   | Water<br>Level<br>(m) | r  |        | le Op<br>to (m    |

I

| oject:<br>ocation:  | Geotechnical Investigatio<br>Mississauga, Ontario          | n and Pa         | ave       | emer              | nt A          | na   | ysi        | S           |   |         |    |                          | She       | et No                                           | <u>1</u> | of _              |
|---------------------|------------------------------------------------------------|------------------|-----------|-------------------|---------------|------|------------|-------------|---|---------|----|--------------------------|-----------|-------------------------------------------------|----------|-------------------|
| ate Drilled:        | Apr. 27, 2020                                              |                  |           | Auger             |               |      |            |             | _ |         |    | Combustik<br>Natural Mo  |           | ur Reading                                      | ×        |                   |
| rill Type:          | Auger Drill - Solid                                        |                  |           | SPT (N<br>Dynam   |               |      | st         |             | 0 |         |    | Plastic and<br>Undrained | •         |                                                 |          | -0                |
| atum:               | Geodetic                                                   |                  |           | Shelby<br>Field V |               | est  |            |             |   | Š       |    | % Strain a<br>Penetrome  | t Failure |                                                 | €        | •                 |
| Soil/Rock<br>Symbol | Soil Description                                           | ELEV.<br>m       | Depth (m) | Shea              | 20<br>r Stren | 4    | PT (N<br>0 | Value<br>60 |   | 80<br>k | Pa | 25                       | 50        | Reading (ppm)<br>75<br>Content %<br>Dry Weight) | Sample   | Natu<br>Ur<br>Wei |
|                     | 0 mm ASPHALT                                               | 173.33<br>~173.2 | 0         |                   |               | - 10 | 00         |             |   | 200     |    | 10                       | 20        | 30                                              |          | kN/               |
| FILL<br>brow        | : sand and gravel, trace silt,<br>/n, moist                | ~173.2           |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    | ×                        |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            | ~172.2           | 1         |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     | YEY SILT TILL: some sand to dy, trace gravel, brown, moist |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    | ×                        |           |                                                 |          |                   |
|                     |                                                            | ~171.3           |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
| END                 | OF BOREHOLE                                                |                  | 2         |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    |                          |           |                                                 |          |                   |
|                     |                                                            |                  | _         |                   |               |      |            |             |   |         |    |                          |           | Water                                           | <u> </u> |                   |
|                     |                                                            |                  |           |                   |               |      |            |             |   |         |    | Elapsed<br>Time          |           | Level<br>(m)                                    |          | to (m             |
| ex                  |                                                            |                  |           |                   |               |      |            |             |   | Γ       | Or | n completio              | n         | dry                                             |          | oper              |

| Project:<br>Location:                | Geotechnical Investigation                                                                      | on and Pa        | ave       | emer                                          | nt A                       | na          | lysi        | S           |   |         |     |                           | _                                                                | SI                                     | neet             | No.                 |     | _ of        |                    |
|--------------------------------------|-------------------------------------------------------------------------------------------------|------------------|-----------|-----------------------------------------------|----------------------------|-------------|-------------|-------------|---|---------|-----|---------------------------|------------------------------------------------------------------|----------------------------------------|------------------|---------------------|-----|-------------|--------------------|
| Date Drille<br>Drill Type:<br>Datum: |                                                                                                 |                  | _         | Auger<br>SPT (N<br>Dynam<br>Shelby<br>Field V | N) Vali<br>nic Cor<br>Tube | ue<br>ne To | est         |             | 0 |         |     | Nat<br>Plas<br>Unc<br>% S | nbustib<br>ural Mo<br>stic and<br>Irained<br>strain at<br>etrome | isture<br>I Liqui<br>Triaxi<br>t Failu | d Limit<br>al at | -                   |     | □<br>×<br>⊕ | С                  |
| Groundwater<br>Soil/Rock<br>Symbol   | Soil Description                                                                                | ELEV.            | Depth (m) | Shee                                          | 20<br>r Strer              |             | PT (N<br>40 | Value<br>60 |   | S<br>80 | kPa |                           | bustible<br>25<br>Natural<br>terberg                             | 5                                      | 0                | 75                  | pm) | 췹           | latu<br>Un<br>Veig |
| F                                    | <ul> <li>135 mm ASPHALT</li> <li>FILL: sand and gravel, trace silt,<br/>prown, moist</li> </ul> | 173.55<br>~173.4 | 0<br>De   |                                               |                            | -           |             |             |   | 200     |     |                           | 10                                                               | 2                                      |                  | 30                  |     |             | KN/i               |
|                                      |                                                                                                 | ~172.4           | 1         |                                               |                            |             |             |             |   |         |     | ×                         |                                                                  |                                        |                  |                     |     |             |                    |
|                                      | CLAYEY SILT TILL: some sand to sandy, trace gravel, brown, moist                                | _                |           |                                               |                            |             |             |             |   |         |     |                           | ×                                                                | C                                      |                  |                     |     |             |                    |
| e i e                                | END OF BOREHOLE                                                                                 | ~171.5           | 2         |                                               |                            |             |             |             |   |         |     |                           |                                                                  |                                        |                  |                     |     | _           |                    |
|                                      |                                                                                                 |                  |           |                                               |                            |             |             |             |   |         |     |                           |                                                                  |                                        |                  |                     |     |             |                    |
|                                      |                                                                                                 |                  |           |                                               |                            |             |             |             |   |         |     |                           |                                                                  |                                        |                  |                     |     |             |                    |
|                                      |                                                                                                 |                  |           |                                               |                            |             |             |             |   |         |     |                           |                                                                  |                                        |                  |                     |     |             |                    |
|                                      |                                                                                                 |                  |           |                                               |                            |             |             |             |   |         |     |                           |                                                                  |                                        |                  |                     |     |             |                    |
|                                      |                                                                                                 |                  |           |                                               |                            |             |             |             |   |         |     |                           |                                                                  |                                        |                  |                     |     |             |                    |
|                                      |                                                                                                 |                  |           |                                               |                            |             |             |             |   |         |     |                           |                                                                  |                                        |                  |                     |     |             |                    |
|                                      |                                                                                                 |                  |           |                                               |                            |             |             |             |   |         |     | Elar                      |                                                                  |                                        |                  | Vater               |     | Hole        |                    |
|                                      | xp.                                                                                             |                  |           |                                               |                            |             |             |             |   |         | 0   | Tir                       | ne                                                               | n                                      |                  | _evel<br>(m)<br>dry | _   | to          | (m)                |

| oject:<br>cation:   | Geotechnical Investigati<br>Mississauga, Ontario                | UT ATU FA        |           |      |      |                          |      |           | 515       | >          |   |        |    |     |   | Comb                     |         |        |       |                |                     | ina _         |   | _ °        | ' -<br>              |
|---------------------|-----------------------------------------------------------------|------------------|-----------|------|------|--------------------------|------|-----------|-----------|------------|---|--------|----|-----|---|--------------------------|---------|--------|-------|----------------|---------------------|---------------|---|------------|----------------------|
| te Drille           | ed: Apr. 29, 2020                                               |                  |           | -    |      | amp<br>Valı              |      |           |           |            | c | ۵<br>و | 3  |     | I | Vatur                    | al N    | loistu | ure   |                |                     | ing           |   | ×          | $\sim$               |
| II Type:            | Auger Drill - Solid                                             |                  | _ D       | )yna | amic | Co                       | ne T | est       |           |            | _ |        | _  |     | ι | Plasti<br>Jndra<br>% Str | aine    | d Tria | axial | l at           | [                   |               | - | ⊕          | -0                   |
| tum:                | Geodetic                                                        |                  |           |      |      | <sup>-</sup> ube<br>ne T |      |           |           |            |   | 1      | s  |     |   | Pene                     |         |        |       | ,              |                     |               |   |            |                      |
| Soil/Rock<br>Symbol | Soil Description                                                | ELEV.<br>m       | Depth (m) | Sh   |      | 20<br>Strer              | ngth | SPT<br>40 | (N V      | alu/<br>60 |   |        | 80 | kPa |   |                          | 25      |        | 50    | e Cor<br>% Dry | 75                  | t %<br>eight) |   | ample      | Nat<br>U<br>We<br>kN |
|                     | 150 mm ASPHALT                                                  | 174.39<br>^174.2 | 0         |      |      |                          |      |           |           |            |   |        |    |     |   |                          |         |        |       |                | $\Pi$               | ,             |   |            |                      |
|                     | ILL: sand and gravel, trace silt, rown, moist                   | _                |           |      |      |                          |      |           |           |            |   |        |    |     |   | *                        |         |        |       |                |                     |               |   |            |                      |
|                     |                                                                 | ~173.5           |           |      |      |                          |      |           |           |            |   |        |    |     |   |                          |         |        |       |                |                     |               |   |            |                      |
|                     | CLAYEY SILT TILL: some sand to andy, trace gravel, brown, moist | _                | 1         |      |      |                          |      |           |           |            |   |        |    |     |   |                          |         |        |       |                |                     |               |   |            |                      |
|                     |                                                                 | _                |           |      |      |                          |      |           |           |            |   |        |    |     |   |                          |         | >      | <     |                |                     |               |   |            |                      |
|                     |                                                                 | ~172.4           | 2         |      |      |                          |      |           |           |            |   |        |    |     |   |                          |         |        |       |                |                     |               |   |            |                      |
| E                   | IND OF BOREHOLE                                                 |                  |           |      |      |                          |      |           |           |            |   |        |    |     |   |                          |         |        |       |                |                     |               |   |            |                      |
|                     |                                                                 |                  |           |      |      |                          |      |           |           |            |   |        |    |     |   |                          |         |        |       |                |                     |               |   |            |                      |
|                     |                                                                 |                  |           |      |      |                          |      |           |           |            |   |        |    |     |   |                          |         |        |       |                |                     |               |   |            |                      |
|                     |                                                                 |                  |           |      |      |                          |      |           |           |            |   |        |    |     |   |                          |         |        |       |                |                     |               |   |            |                      |
|                     |                                                                 |                  |           |      |      |                          |      |           |           |            |   |        |    |     |   |                          |         |        |       |                |                     |               |   |            |                      |
|                     |                                                                 |                  |           |      |      |                          |      |           |           |            |   |        |    |     |   |                          |         |        |       |                | +                   |               |   |            |                      |
|                     |                                                                 |                  |           |      |      |                          |      |           |           |            |   |        |    |     |   |                          |         |        |       |                |                     |               |   |            |                      |
|                     |                                                                 |                  |           |      |      |                          |      |           |           |            |   |        |    |     |   |                          |         |        |       |                | +                   |               |   |            |                      |
|                     |                                                                 |                  |           |      |      |                          |      |           |           |            |   |        |    |     |   |                          |         |        |       |                |                     |               |   |            |                      |
|                     |                                                                 |                  |           |      |      |                          |      |           |           |            |   |        |    |     |   |                          |         |        |       |                |                     |               |   |            |                      |
|                     |                                                                 |                  |           |      |      |                          |      |           |           |            |   |        |    |     |   |                          |         |        |       |                | +                   |               |   |            |                      |
|                     |                                                                 |                  |           |      |      |                          |      |           |           |            |   |        |    |     |   |                          |         |        | Ħ     |                | +                   |               | + |            |                      |
|                     |                                                                 |                  |           |      |      |                          |      |           |           |            |   |        |    |     |   |                          |         |        |       |                |                     |               |   |            |                      |
|                     |                                                                 |                  |           |      |      |                          |      |           | $\square$ |            |   |        |    |     |   |                          |         |        |       | $\square$      | +                   |               |   |            |                      |
|                     |                                                                 |                  |           |      |      |                          |      |           |           |            |   |        |    |     |   |                          |         |        |       |                |                     |               |   |            |                      |
|                     |                                                                 |                  |           |      |      |                          |      |           |           |            |   |        |    |     | E | Elaps<br>Time            | ed<br>Ə |        |       | L              | Vate<br>Leve<br>(m) | el 👘          |   | Hole<br>to | e Op<br>o (m         |

| roject:<br>ocation: | Geotechnical Investigation<br>Mississauga, Ontario                                   | n and Pav         | /e        | me             | nt          | Ar         | nal      | lys   | is |            |   |     |     |   |               | -     |                           | She    | et N | 10.          |                    | <u>1</u> | of         | · _1                            |
|---------------------|--------------------------------------------------------------------------------------|-------------------|-----------|----------------|-------------|------------|----------|-------|----|------------|---|-----|-----|---|---------------|-------|---------------------------|--------|------|--------------|--------------------|----------|------------|---------------------------------|
| ate Drilled:        | Apr. 29, 2020                                                                        |                   |           | Augei<br>SPT ( |             |            |          |       |    |            |   |     |     | N | latura        | al M  | ole Va<br>bistu           | e      |      | adin         | ,g                 | _        | -<br><     | ~                               |
| rill Type:          | Auger Drill - Solid                                                                  |                   | [         | Dynai          | nic (       | Cone       |          | st    |    | -          | _ | _   |     | U | Indra         | lined | d Liq<br>I Tria<br>It Fai | kial a |      |              |                    |          | Đ          | 0                               |
| atum:               | Geodetic                                                                             |                   |           | Shelb<br>Field |             |            | st       |       |    |            |   | S   |     |   | enet          |       |                           | ure    |      |              |                    | 4        | •          |                                 |
| Soil/Rock<br>Symbol | Soil Description                                                                     | ELEV.<br>m        | Depth (m) | She            | 20<br>ar Si | )<br>treng | 4<br>Ith | PT (N |    | lue)<br>60 |   | 80  | kPa |   | Na<br>Atter   | 25    |                           | 50     |      | 75           | (ppm)<br>%<br>ght) | ) ) )    |            | Vatura<br>Unit<br>Neigł<br>kN/m |
| ~ 10                | 0 mm TOPSOIL<br>: clayey silt, trace sand, trace<br>el, trace rootlets, brown, moist | 174.52<br>~~174.4 |           |                |             |            |          |       |    |            |   | 200 |     |   |               |       | *                         | ,      |      |              |                    |          |            |                                 |
|                     | YEY SILT TILL: some sand to<br>ly, trace gravel, brown, moist                        | ~173.5            |           |                |             |            |          |       |    |            |   |     |     |   |               |       | *                         |        |      |              |                    |          |            |                                 |
| END                 | OF BOREHOLE                                                                          | ~172.5            | 2         |                |             |            |          |       |    |            |   |     |     |   |               |       |                           |        |      |              |                    |          |            |                                 |
|                     |                                                                                      |                   |           |                |             |            |          |       |    |            |   |     |     |   |               |       |                           |        |      |              |                    |          |            |                                 |
|                     |                                                                                      |                   |           |                |             |            |          |       |    |            |   |     |     |   |               |       |                           |        |      |              |                    |          |            |                                 |
|                     |                                                                                      |                   |           |                |             |            |          |       |    |            |   |     |     | E | lapse<br>Time | ed    |                           |        |      | ater<br>evel |                    | F        | lole<br>to | Oper                            |

I

| roject:<br>ocation:        | Geotechnical Investigatio<br>Mississauga, Ontario          |                  |           |                    |             |     |            |     |     |            | <b>19</b><br>Dra           |     |               |            |        | of _1                          |
|----------------------------|------------------------------------------------------------|------------------|-----------|--------------------|-------------|-----|------------|-----|-----|------------|----------------------------|-----|---------------|------------|--------|--------------------------------|
| ate Drilled:               | Apr. 29, 2020                                              |                  |           | Auger S            |             |     | _          |     |     |            | oustible Va<br>al Moistur  |     | Readi         | ng         | □<br>× |                                |
| rill Type:                 | Auger Drill - Solid                                        |                  | _         | SPT (N<br>Dynami   | c Cor       |     |            |     |     |            | c and Liqu<br>ained Tria:  |     |               | H          |        | -0                             |
| atum:                      | Geodetic                                                   |                  |           | Shelby<br>Field Va |             | est |            | s   |     |            | ain at Fail<br>trometer    | ure |               |            | ⊕      |                                |
| Soil/Rock<br>Symbol        | Soil Description                                           | ELEV.<br>m       | Depth (m) | Shear              | 20<br>Stren | 40  | lue)<br>60 | 80  | kPa | Na<br>Atte | atural Mois<br>rberg Limit | 50  | 75            | %<br>ight) | Sample | Natur<br>Unit<br>Weigl<br>kN/m |
| ~ 16                       | 0 mm ASPHALT                                               | 174.35<br>~174.2 | 0         |                    |             |     |            | 200 |     |            |                            |     | 30            |            |        |                                |
| brow                       | : sand and gravel, trace silt,<br>n, moist                 | _                |           |                    |             |     |            |     |     | ×          |                            |     |               |            |        |                                |
|                            |                                                            | ~173.4           |           |                    |             |     |            |     |     |            |                            |     |               |            | _      |                                |
|                            | YEY SILT TILL: some sand to dy, trace gravel, brown, moist |                  | 1         |                    |             |     |            |     |     |            |                            |     |               |            |        |                                |
| 9<br>9<br>1<br>9<br>1<br>9 |                                                            | _                |           |                    |             |     |            |     |     |            | ×                          |     |               |            |        | l                              |
|                            |                                                            | ~172.3           | 2         |                    |             |     |            |     |     |            |                            |     |               |            | -      |                                |
| END                        | OF BOREHOLE                                                |                  |           |                    |             |     |            |     |     |            |                            |     |               |            |        |                                |
|                            |                                                            |                  |           |                    |             |     |            |     |     |            |                            |     |               |            | -      |                                |
|                            |                                                            |                  |           |                    |             |     |            |     |     |            |                            |     |               |            | -      | l                              |
|                            |                                                            |                  |           |                    |             |     |            |     |     |            |                            |     |               |            | -      |                                |
|                            |                                                            |                  |           |                    |             |     |            |     |     |            |                            |     |               |            | -      |                                |
|                            |                                                            |                  |           |                    |             |     |            |     |     |            |                            |     |               |            |        |                                |
|                            |                                                            |                  |           |                    |             |     |            |     |     |            |                            |     |               |            | _      | 1                              |
|                            |                                                            |                  |           |                    |             |     |            |     |     |            |                            |     |               |            | -      | 1                              |
|                            |                                                            |                  |           |                    |             |     |            |     |     |            |                            |     |               |            | -      |                                |
|                            |                                                            |                  |           |                    |             |     |            |     |     |            |                            |     |               |            |        | 1                              |
|                            |                                                            |                  |           |                    |             |     |            |     |     |            |                            |     |               |            |        |                                |
| I                          |                                                            | 1                | _, 1      |                    |             |     | <br>       |     |     | Elaps      | ed<br>ed                   |     | Wate<br>Level |            |        | le Op<br>to (m)                |
| ех                         |                                                            |                  |           |                    |             |     |            |     | 0   | n comp     | letion                     |     | (m)<br>dry    |            |        | open                           |

| ocation:              | Mississauga, Ontario                                                        |                      | _         |                |             |   |    |           |           |   |           |        |     | Com | nbus  | tible Va            | apour   | Rea                  | ding      |           |          |                      |
|-----------------------|-----------------------------------------------------------------------------|----------------------|-----------|----------------|-------------|---|----|-----------|-----------|---|-----------|--------|-----|-----|-------|---------------------|---------|----------------------|-----------|-----------|----------|----------------------|
| ate Drilled:          | Apr. 29, 2020                                                               |                      |           | Augei<br>SPT ( |             |   |    |           |           | С | ⊠<br>⊡ (  |        |     |     |       | Moistur<br>Ind Liqu |         | mit                  |           | L         | ×        |                      |
| rill Type:            | Auger Drill - Solid                                                         |                      | _         | Dynai<br>Shelb |             |   | Te | st        |           | _ |           | -      |     | Und | raine | ed Tria:<br>at Fail | kial at |                      |           | •         | $\oplus$ | , 0                  |
| atum:                 | Geodetic                                                                    |                      |           | Field          |             |   | st |           |           |   | s         | 5      |     |     |       | neter               | ure     |                      |           |           | <b></b>  |                      |
| Soil/Rock<br>Symbol   | Soil Description                                                            | ELEV.<br>m<br>175.29 | Depth (m) | She            | 20<br>ar St |   | 4( | 0         | Valu<br>6 |   |           | 30<br> | (Pa |     | 25    | al Mois<br>rg Limit | 50      | 7<br>Conter<br>Dry W | 75        | m)<br>)   | Sample   | Nat<br>U<br>We<br>kN |
|                       | 0 mm ASPHALT                                                                | ~175.1               | 0         |                |             |   | -  |           |           |   |           |        |     |     |       |                     |         |                      |           |           |          |                      |
| FILL<br>frequ<br>mois | : sand and gravel, trace silt,<br>uent clayey silt inclusions, brown,<br>st |                      |           |                |             |   |    |           |           |   |           |        |     |     | ×     |                     |         |                      |           |           |          | l                    |
|                       | YEY SILT TILL: some sand to dy trace gravel, brown, moist                   | ~174.6               |           |                |             |   |    |           |           |   |           |        |     |     |       |                     |         |                      |           |           |          |                      |
| Sano<br>Sano          | y, trace gravel, brown, moist                                               | _                    | 1         |                |             |   |    |           |           |   |           |        |     |     |       |                     |         |                      |           |           |          |                      |
|                       |                                                                             |                      |           |                |             |   |    |           |           |   |           |        |     |     |       | ×                   |         |                      |           |           |          |                      |
|                       |                                                                             | _                    |           |                |             |   |    |           |           |   |           |        |     |     |       |                     |         |                      |           |           |          |                      |
|                       |                                                                             | ~173.3               |           |                |             |   |    |           |           |   |           |        |     |     |       |                     |         |                      |           |           |          |                      |
| END                   | OF BOREHOLE                                                                 |                      | 2         |                |             |   |    |           |           |   |           |        |     |     |       |                     |         |                      |           |           |          |                      |
|                       |                                                                             |                      |           |                |             |   |    |           |           |   |           |        |     |     |       |                     |         |                      |           |           |          |                      |
|                       |                                                                             |                      |           |                |             |   |    |           |           |   |           |        |     |     |       |                     |         | +                    |           |           |          | 1                    |
|                       |                                                                             |                      |           |                |             |   |    |           |           |   |           |        |     |     |       |                     |         |                      |           |           |          |                      |
|                       |                                                                             |                      |           |                |             |   |    |           |           | + |           |        |     |     |       |                     |         | #                    | #         |           |          | 1                    |
|                       |                                                                             |                      |           |                |             |   |    |           | Ħ         | + |           |        |     |     |       |                     |         | +                    | +         |           |          |                      |
|                       |                                                                             |                      |           |                |             |   |    |           |           |   |           |        |     |     |       |                     |         |                      |           |           |          | 1                    |
|                       |                                                                             |                      |           |                |             |   |    |           |           |   |           |        |     |     |       |                     |         |                      |           |           |          |                      |
|                       |                                                                             |                      |           |                |             |   |    |           |           |   |           |        |     |     |       |                     |         | ++-                  |           |           |          |                      |
|                       |                                                                             |                      |           |                |             |   |    |           |           |   |           |        |     |     |       |                     |         |                      |           |           |          |                      |
|                       |                                                                             |                      |           |                |             |   |    |           |           |   |           |        |     |     |       |                     |         |                      |           |           |          |                      |
|                       |                                                                             |                      |           |                |             |   |    |           | +         | # |           |        |     |     |       |                     |         | +                    | #         |           |          |                      |
|                       |                                                                             |                      |           |                |             |   |    |           |           | # |           |        |     |     |       |                     |         | +                    | #         |           |          | 1                    |
|                       |                                                                             |                      |           |                |             |   |    |           |           | + |           |        |     |     |       |                     |         | +                    | +         | ++        |          |                      |
|                       |                                                                             |                      |           |                |             |   |    | +         | +         | + |           |        |     |     |       |                     |         | +                    | Ħ         | $\square$ |          |                      |
|                       |                                                                             |                      |           |                |             |   |    |           |           |   |           |        |     |     |       |                     |         |                      | $\square$ | $\square$ |          | 1                    |
|                       |                                                                             |                      |           |                |             | Ħ |    | $\square$ | Ħ         |   | $\square$ | H      | +   |     |       |                     |         |                      | Ħ         | $\square$ |          | 1                    |

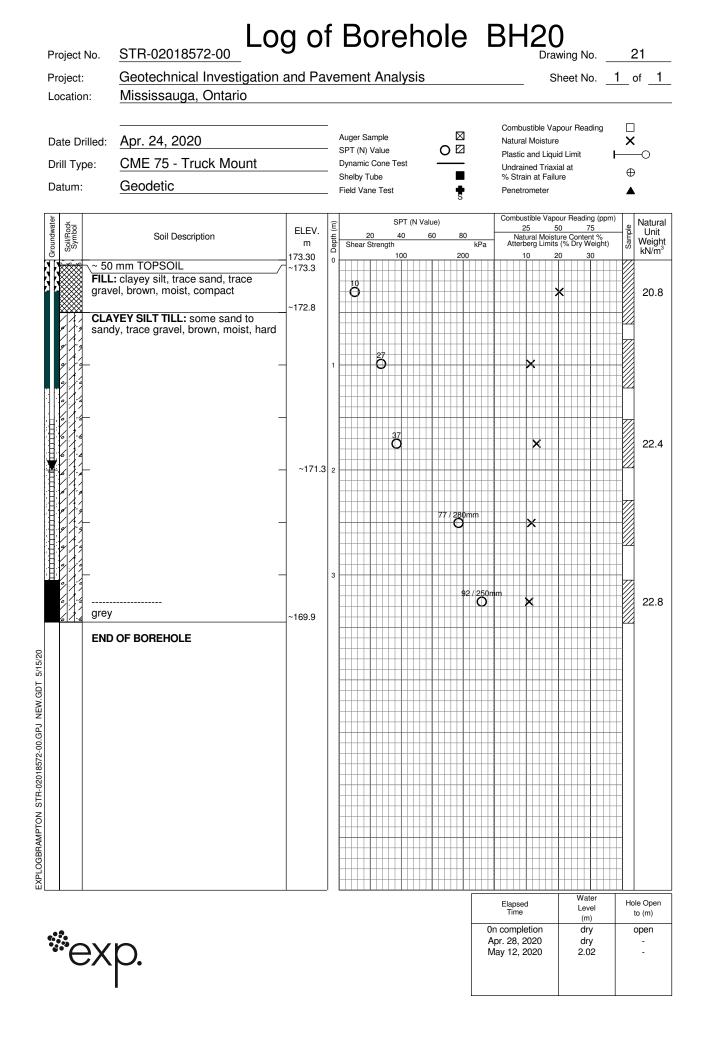
<sup>\*</sup>exp.

| oject:<br>ocation:    | Geotechnical Investigation<br>Mississauga, Ontario                                                     |         |           | Boreh                                               |          |     |                                                       | heet No.                                                        |        | of <b>1</b>                  |
|-----------------------|--------------------------------------------------------------------------------------------------------|---------|-----------|-----------------------------------------------------|----------|-----|-------------------------------------------------------|-----------------------------------------------------------------|--------|------------------------------|
| ate Drilled:          | Apr. 24, 2020                                                                                          |         | -         | Auger Sample<br>SPT (N) Value                       | O ⊠<br>⊠ |     | Combustible Va<br>Natural Moistur<br>Plastic and Liqu | 9                                                               | ×      |                              |
| rill Type:<br>atum:   | CME 75 - Truck Mount<br>Geodetic                                                                       |         | -         | Dynamic Cone Test<br>Shelby Tube<br>Field Vane Test | ∎<br>S   |     | Undrained Triax<br>% Strain at Fail<br>Penetrometer   |                                                                 | ⊕      |                              |
| Soil/Rock<br>Symbol   | Soil Description                                                                                       | ELEV.   | Depth (m) | SPT (N V<br>20 40<br>Shear Strength                 | 60 80    | kPa | 25<br>Natural Moist<br>Atterberg Limits               | our Reading (ppm)<br>50 75<br>ure Content %<br>s (% Dry Weight) | Sample | Natur<br>Uni<br>Weig<br>kN/n |
| ~ 50<br>FILL<br>grave | mm TOPSOIL<br>: clayey silt, trace sand, trace<br>el, trace rootlets, dark brown to<br>m, moist, loose | ~173.61 | 0         |                                                     |          |     |                                                       | 20 30                                                           |        | 19.                          |
| sand                  | YEY SILT TILL: some sand to<br>ly, trace gravel, brown, moist, very<br>to hard                         |         | 1         | 23                                                  |          |     | ×                                                     |                                                                 |        | 21.                          |
|                       | -                                                                                                      | ~171.5  | 2         | ð                                                   |          |     | ×                                                     |                                                                 |        | 22.                          |
| END                   | OF BOREHOLE                                                                                            |         |           |                                                     |          |     |                                                       |                                                                 |        |                              |
|                       |                                                                                                        |         |           |                                                     |          |     |                                                       |                                                                 |        |                              |
|                       |                                                                                                        |         |           |                                                     |          |     |                                                       |                                                                 |        |                              |
|                       |                                                                                                        |         |           |                                                     |          |     |                                                       |                                                                 |        |                              |
|                       |                                                                                                        |         | _         |                                                     |          |     | Elapsed<br>Time                                       | Water<br>Level                                                  |        | le Ope<br>to (m)             |
| *ex                   | p.                                                                                                     |         |           |                                                     |          | Or  | n completion                                          | (m)<br>dry                                                      |        | 1.5                          |

| roject<br>ocatic    |         | Geotechnical Investigation<br>Mississauga, Ontario |            |           |                |             |              |      | <br>       |          |     |     |   |                | -       |                              |        |                 |                                       |           |       | f _1                           |
|---------------------|---------|----------------------------------------------------|------------|-----------|----------------|-------------|--------------|------|------------|----------|-----|-----|---|----------------|---------|------------------------------|--------|-----------------|---------------------------------------|-----------|-------|--------------------------------|
| ate D               | rilled: | Apr. 27, 2020                                      |            |           | Auger<br>SPT ( |             |              |      |            | 0        |     |     | Ν | Vatur          | al M    | oistur                       | e      | r Rea           | aing                                  |           | ×     | ~                              |
| rill Ty             | pe:     | Auger Drill - Solid                                |            | _         | Dynar<br>Shelb | nic (       | Cone         | Test | •          | <u> </u> |     |     | ι | Jndra          | lined   | d Liqu<br>I Tria:<br>at Fail | xial a |                 |                                       | -         | ⊕     | 0                              |
| atum                |         | Geodetic                                           |            |           | Field \        |             |              | t    |            |          | s   |     |   | Penet          |         |                              | luie   |                 |                                       |           |       |                                |
| Soil/Rock<br>Symbol |         | Soil Description                                   | ELEV.<br>m | Depth (m) | Shea           | 20<br>ar S1 | )<br>trengtl | 40   | alue<br>60 | )        | 80  | kPa | _ | Na<br>Atter    | 25      | Mois<br>Limit                | 50     | Conte<br>Dry W  | ng (pp<br>75<br>Int %<br>Veight<br>30 | ım)<br>t) | ample | Natur<br>Unit<br>Weigl<br>kN/m |
|                     | ~ 25    | 0 mm ASPHALT                                       | ~173.27    | 0         |                |             |              |      |            |          | 200 |     |   |                |         |                              | 20     |                 |                                       |           | +     |                                |
|                     |         | : sand and gravel, trace silt,<br>m, moist         |            |           |                |             |              |      |            |          |     |     |   | ×              |         |                              |        |                 |                                       |           |       |                                |
|                     |         | YEY SILT TILL: some sand to                        | ~172.3     | 1         |                |             |              |      |            |          |     |     |   |                |         |                              |        |                 |                                       |           |       |                                |
|                     |         | ly, trace gravel, brown, moist                     |            |           |                |             |              |      |            |          |     |     |   |                |         |                              |        |                 |                                       |           |       |                                |
|                     |         |                                                    |            |           |                |             |              |      |            |          |     |     |   |                | ×       |                              |        |                 |                                       |           |       |                                |
| <u>[] [.</u>        | END     | OF BOREHOLE                                        | ~171.3     | 2         |                |             |              |      |            |          |     |     |   |                |         |                              |        |                 |                                       |           |       |                                |
|                     |         |                                                    |            |           |                |             |              |      |            |          |     |     |   |                |         |                              |        |                 |                                       |           |       |                                |
|                     |         |                                                    |            |           |                |             |              |      |            |          |     |     |   |                |         |                              |        |                 |                                       |           |       |                                |
|                     |         |                                                    |            |           |                |             |              |      |            |          |     |     |   |                |         |                              |        |                 |                                       |           |       |                                |
|                     |         |                                                    |            |           |                |             |              |      |            |          |     |     |   |                |         |                              |        |                 |                                       |           |       |                                |
|                     |         |                                                    |            |           |                |             |              |      |            |          |     |     |   |                |         |                              |        |                 |                                       |           |       |                                |
|                     |         |                                                    |            |           |                |             |              |      |            |          |     |     |   |                |         |                              |        |                 |                                       |           |       |                                |
|                     |         |                                                    |            |           |                |             |              |      |            |          |     |     |   |                |         |                              |        |                 |                                       |           |       |                                |
|                     |         |                                                    |            |           |                |             |              |      |            |          |     |     |   |                |         |                              |        |                 |                                       |           |       |                                |
|                     |         |                                                    |            |           |                |             |              |      |            |          |     |     |   |                |         |                              |        |                 |                                       |           |       |                                |
|                     |         |                                                    |            |           |                |             |              |      |            |          |     |     | E | Elapse<br>Time | ed<br>e |                              |        | Wa<br>Lev<br>(m | vel                                   |           |       | e Ope<br>(m)                   |

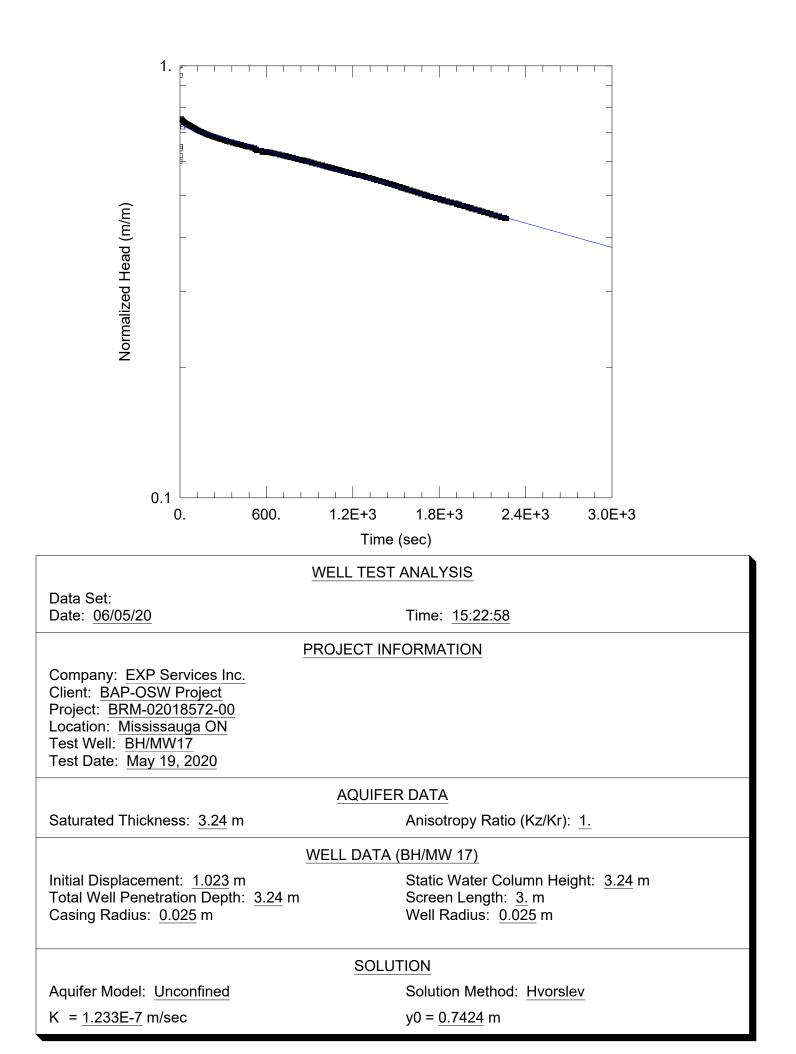
|                                    |                                                                                                     |                      |            |                                                                        |             |                    |              |   |                 | Elap                       | sed                                |                                                                  |                         | Water<br>Level<br>(m)                       |             | Hole Op                  |
|------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------|------------|------------------------------------------------------------------------|-------------|--------------------|--------------|---|-----------------|----------------------------|------------------------------------|------------------------------------------------------------------|-------------------------|---------------------------------------------|-------------|--------------------------|
|                                    |                                                                                                     |                      |            |                                                                        |             |                    |              |   |                 |                            |                                    |                                                                  |                         |                                             |             |                          |
| END                                | OF BOREHOLE                                                                                         | ~171.0               | 2          |                                                                        |             |                    |              |   |                 |                            |                                    |                                                                  |                         |                                             |             |                          |
|                                    | <b>YEY SILT TILL:</b> some sand to<br>ly, trace gravel, brown, moist, hard                          | ~171.6               |            | 19<br><b>Ф</b>                                                         |             |                    |              |   |                 |                            |                                    | ×                                                                |                         |                                             |             | 21                       |
| FILL                               | 0 mm TOPSOIL<br>: clayey silt, trace sand, trace<br>el, trace rootlets, black to brown,<br>t, loose | ~173.0<br>           | 1          | ð<br>Å                                                                 |             |                    |              |   |                 |                            |                                    | ×                                                                |                         |                                             |             |                          |
| Soil/Rock<br>Symbol                | Soil Description                                                                                    | ELEV.<br>m<br>173.17 | Depth (m)  | 20<br>Shear Stre                                                       | 4           | PT (N \<br>0<br>00 | /alue)<br>60 | 8 | 30<br>kPa<br>00 |                            | 25                                 | al Moist<br>rg Limits                                            | 50                      | ading (pj<br>75<br>ntent %<br>7 Weigh<br>30 | bm)<br>t) c | Natu<br>Ur<br>Wei<br>kN/ |
| ate Drilled:<br>ill Type:<br>atum: | Apr. 24, 2020<br>CME 75 - Truck Mount<br>Geodetic                                                   |                      | - :<br>- : | Auger Samp<br>SPT (N) Val<br>Dynamic Co<br>Shelby Tube<br>Field Vane T | ue<br>ne Te | st                 | -            |   |                 | Natu<br>Plas<br>Und<br>% S | ural M<br>stic a<br>raine<br>train | tible Va<br>Moisture<br>nd Liqu<br>ed Triax<br>at Faile<br>neter | e<br>Iid Lim<br>Kial at | Reading                                     | E<br>H      | ⊐<br>×<br>⊕              |
| oject:<br>ocation:                 | Geotechnical Investigation<br>Mississauga, Ontario                                                  | n and Pa             | ve         | ment A                                                                 | nal         | ysis               | <u> </u>     |   |                 |                            | _                                  | S                                                                | sheet                   | No.                                         |             | _ OT _                   |

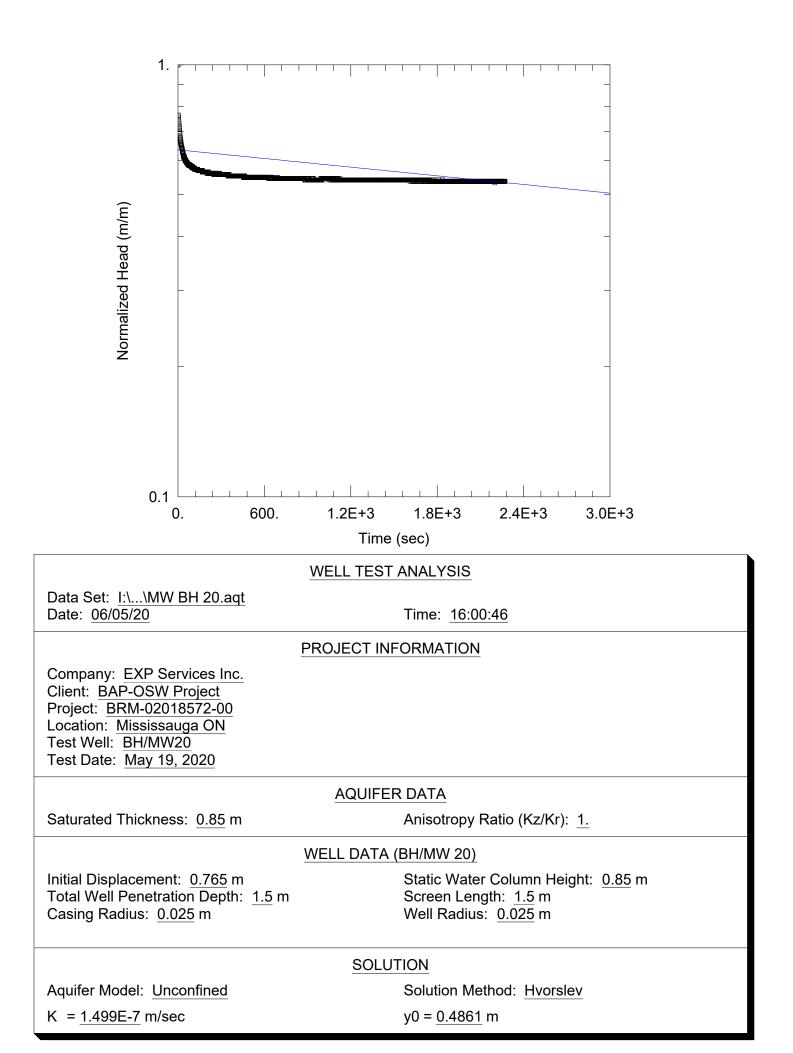
| Project No.<br>Project:<br>Location: | STR-02018572-00<br>Geotechnical Investigation<br>Mississauga, Ontario                                    |                      |           |                          |          |                 |                  |               |                               | ving No                        |        | 15<br>of <u>1</u>               |
|--------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------|-----------|--------------------------|----------|-----------------|------------------|---------------|-------------------------------|--------------------------------|--------|---------------------------------|
| Date Drilled:                        | Apr. 24, 2020                                                                                            |                      |           | Auger Sam<br>SPT (N) Va  |          | C               |                  | Natur         | al Moisture                   |                                | ×      |                                 |
| Drill Type:                          | CME 75 - Truck Mount                                                                                     |                      | _         | Dynamic C                | one Test | _               |                  | Undra         | c and Liquid<br>ained Triaxia | al at                          |        | -0<br>}                         |
| Datum:                               | Geodetic                                                                                                 |                      |           | Shelby Tub<br>Field Vane |          |                 | s                |               | ain at Failu<br>trometer      | re                             |        | L.                              |
| Symbol                               | Soil Description                                                                                         | ELEV.<br>m<br>173.98 | Depth (m) | 20<br>Shear Stre         | 40       | (N Value)<br>60 | 80<br>kPa<br>200 | Na<br>Atte    | 25 50                         | re Content %<br>(% Dry Weight) | Sample | Natura<br>Unit<br>Weigh<br>kN/m |
| FILL:                                | ) mm TOPSOIL<br>clayey silt, trace sand, trace<br>el, trace rootlets, dark brown to<br>n, moist, compact | ~173.8               | 0         | ö                        |          |                 |                  |               | ×                             |                                |        | 22.4                            |
|                                      | <b>/EY SILT TILL:</b> some sand to<br>y, trace gravel, brown, moist, hard<br>-                           | -                    | 1         |                          | 38<br>O  |                 |                  |               | *                             |                                |        | 22.4                            |
|                                      | -                                                                                                        | ~172.0               |           |                          |          | 66 / 280        |                  |               | ×                             |                                |        | 21.0                            |
|                                      | OF BOREHOLE                                                                                              |                      |           |                          |          |                 |                  |               |                               |                                |        |                                 |
|                                      |                                                                                                          |                      |           |                          |          |                 |                  | Elaps<br>Time | •                             | Water<br>Level<br>(m)          |        | to (m)                          |
| *ex                                  | р.                                                                                                       |                      |           |                          |          |                 |                  | On comp       | ເບເດ                          | dry                            |        | 1.5                             |


| oject:<br>cation:   | Geotechnical Investigation<br>Mississauga, Ontario                                                     | n and Pa           | ave       | ement Analy                       | /sis |           | S                                       | heet No.                                                         | <u>1</u> c | of _                  |
|---------------------|--------------------------------------------------------------------------------------------------------|--------------------|-----------|-----------------------------------|------|-----------|-----------------------------------------|------------------------------------------------------------------|------------|-----------------------|
| cation:             | Mississauga, Ontario                                                                                   |                    |           |                                   |      |           |                                         |                                                                  |            |                       |
| te Drilled:         | Apr. 24, 2020                                                                                          |                    |           | Auger Sample                      |      | 3         | Combustible Va<br>Natural Moisture      |                                                                  | ×          |                       |
| ll Type:            | CME 75 - Truck Mount                                                                                   |                    | _         | SPT (N) Value<br>Dynamic Cone Tes | _    | _         | Plastic and Liqu<br>Undrained Triax     | tial at                                                          |            | -0                    |
| tum:                | Geodetic                                                                                               |                    |           | Shelby Tube<br>Field Vane Test    | 4    | 5         | % Strain at Fail<br>Penetrometer        | ıre                                                              | ⊕          |                       |
| Soil/Rock<br>Symbol | Soil Description                                                                                       | ELEV.              | Depth (m) | 20 40<br>Shear Strength           |      | 80<br>kPa | 25<br>Natural Moist<br>Atterberg Limits | our Reading (ppm)<br>50 75<br>ture Content %<br>s (% Dry Weight) | Sample     | Nat<br>Ui<br>We<br>kN |
| FILL grav           | mm TOPSOIL<br>: clayey silt, trace sand, trace<br>el, trace rootlets, dark brown to<br>m, moist, loose | 173.09<br>/ ~173.0 | 0         |                                   |      |           |                                         | 20 30                                                            |            | 20                    |
| sanc                | YEY SILT TILL: some sand to<br>ly, trace gravel, brown, moist, very<br>to hard                         | ~172.2             | 1         | 22<br>O                           |      |           | *                                       |                                                                  |            | 21                    |
|                     |                                                                                                        | ~171.0             | 2         | 30<br>O                           |      |           | ×                                       |                                                                  |            | 22                    |
| END                 | OF BOREHOLE                                                                                            |                    |           |                                   |      |           |                                         |                                                                  |            |                       |
|                     |                                                                                                        |                    |           |                                   |      |           |                                         | Water                                                            | <u></u>    |                       |
|                     |                                                                                                        |                    |           |                                   |      |           | Elapsed<br>Time                         | Level<br>(m)                                                     |            | le Op<br>to (m)       |
| ех                  |                                                                                                        |                    |           |                                   |      | 0         | n completion                            | dry                                                              |            | 1.4                   |

| oject:<br>ocation:  | Geotechnical Investigation<br>Mississauga, Ontario            |                  | _         |                   |             | -    |         |      |             |          |     |     |   | Cam          |                        |                           |                       |    |                       |                     |          | of                            |
|---------------------|---------------------------------------------------------------|------------------|-----------|-------------------|-------------|------|---------|------|-------------|----------|-----|-----|---|--------------|------------------------|---------------------------|-----------------------|----|-----------------------|---------------------|----------|-------------------------------|
| ate Drilled:        | Apr. 27, 2020                                                 |                  |           | Auger<br>SPT (I   |             |      |         |      |             | 0        | Ø   |     | I | Natu         | ral M                  | ble V<br>loistu           | ire                   |    |                       | ıy                  | <br>_ >  |                               |
| rill Type:          | Auger Drill - Solid                                           |                  | _         | Dynan             | nic (       | Cone | Test    |      | -           | <u> </u> | _   |     |   | Undr         | aine                   | id Liq<br>d Tria<br>at Fa | axial                 | at |                       |                     |          | —0<br>Э                       |
| atum:               | Geodetic                                                      |                  |           | Shelby<br>Field \ |             |      | t       |      |             |          | s   |     |   | Pene         |                        |                           | uure                  | ,  |                       |                     |          | •                             |
| Soil/Rock<br>Symbol | Soil Description                                              | ELEV.            | Depth (m) | Shea              | 20<br>ar St |      | 40<br>1 | (N V | alue)<br>60 | )        | 80  | kPa |   |              | 25<br>latura<br>erberg | le Va<br>I Moi:<br>g Lim  | 50<br>sture<br>its (? |    | 75<br>ntent<br>Wei    | (ppm)<br>%<br>ight) | Sample ( | Natur<br>Unit<br>Weig<br>kN/m |
| ~ 17                | 0 mm ASPHALT                                                  | 173.07<br>~172.9 | 0         |                   |             |      | 100     |      |             |          | 200 |     |   |              | 10                     |                           | 20                    |    | 30                    |                     |          |                               |
| FILL<br>brow        | : sand and gravel, trace silt,<br>n, moist                    |                  |           |                   |             |      |         |      |             |          |     |     |   | ×            |                        |                           |                       |    |                       |                     |          | _                             |
|                     |                                                               | ~172.1           |           |                   |             |      |         |      |             |          |     |     |   |              |                        |                           |                       |    |                       |                     |          |                               |
|                     | YEY SILT TILL: some sand to<br>dy, trace gravel, brown, moist |                  | 1         |                   |             |      |         |      |             |          |     |     |   |              |                        |                           |                       |    |                       |                     |          |                               |
|                     |                                                               | -                |           |                   |             |      |         |      |             |          |     |     |   |              |                        | ×                         |                       |    |                       |                     |          |                               |
| END                 | OF BOREHOLE                                                   | ~171.1           | 2         |                   |             |      |         |      |             |          |     |     |   |              |                        |                           |                       |    |                       |                     |          |                               |
|                     |                                                               |                  |           |                   |             |      |         |      |             |          |     |     |   |              |                        |                           |                       |    |                       |                     |          |                               |
|                     |                                                               |                  |           |                   |             |      |         |      |             |          |     |     |   |              |                        |                           |                       |    |                       |                     |          |                               |
|                     |                                                               |                  |           |                   |             |      |         |      |             |          |     |     |   |              |                        |                           |                       |    |                       |                     |          |                               |
|                     |                                                               |                  |           |                   |             |      |         |      |             |          |     |     |   |              |                        |                           |                       |    |                       |                     |          |                               |
|                     |                                                               |                  |           |                   |             |      |         |      |             |          |     |     |   |              |                        |                           |                       |    |                       |                     |          |                               |
|                     |                                                               |                  |           |                   |             |      |         |      |             |          |     |     |   |              |                        |                           |                       |    |                       |                     |          |                               |
|                     |                                                               |                  |           |                   |             |      |         |      |             |          |     |     |   |              |                        |                           |                       |    |                       |                     |          |                               |
|                     |                                                               |                  |           |                   |             |      |         |      |             |          |     |     |   |              |                        |                           |                       |    |                       |                     |          |                               |
|                     |                                                               |                  |           |                   |             |      |         |      |             |          |     |     |   |              |                        |                           |                       |    |                       |                     |          |                               |
|                     |                                                               |                  |           |                   |             |      |         |      |             |          |     |     |   |              |                        |                           |                       |    |                       |                     |          |                               |
|                     |                                                               |                  |           |                   |             |      |         |      |             |          |     |     |   | Elaps<br>Tim | sed                    |                           |                       | L  | Vater<br>Level<br>(m) |                     | н        | ole Oper<br>to (m)            |

| oject No.<br>oject:<br>ocation:       | STR-02018572-00<br>Geotechnical Investigation<br>Mississauga, Ontario   |                  |                          | Borehole E                                                                                                                 |                                                                                                                                            |          | 18<br>of                   |
|---------------------------------------|-------------------------------------------------------------------------|------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| ate Drillec<br>rill Type:<br>atum:    | d: Apr. 24, 2020<br>CME 75 - Truck Mount<br>Geodetic                    |                  | - SI<br>D <u>i</u><br>SI | uger Sample<br>PT (N) Value<br>ynamic Cone Test<br>helby Tube<br>eld Vane Test<br>\$                                       | Combustible Vapour Reading<br>Natural Moisture<br>Plastic and Liquid Limit<br>Undrained Triaxial at<br>% Strain at Failure<br>Penetrometer | ×<br>    | <b>(</b><br>—0             |
| Soil/Rock<br>Symbol                   | Soil Description                                                        | ELEV.<br>m       |                          | SPT (N Value)           20         40         60         80           Shear Strength         kPa           100         200 | Combustible Vapour Reading (r<br>25 50 75<br>Natural Moisture Content %<br>Atterberg Limits (% Dry Weig<br>10 20 30                        | <u>e</u> | Natu<br>Un<br>Weig<br>kN/r |
| 🗰 FI                                  | 150 mm ASPHALT<br>LL: sand and gravel, trace silt,<br>own, moist, dense | 172.40<br>~172.2 | 0                        | 30                                                                                                                         | ×                                                                                                                                          |          |                            |
|                                       | LAYEY SILT TILL: some sand to andy, trace gravel, brown, moist, harc    | ~171.4           | 1                        | <u></u>                                                                                                                    | *                                                                                                                                          |          |                            |
| 1 0 0 0 0                             |                                                                         |                  | 2                        | 37<br>Č                                                                                                                    | ×                                                                                                                                          |          | 21                         |
|                                       |                                                                         | _                |                          | 747280mm                                                                                                                   | ×                                                                                                                                          |          | 22                         |
| • • • • • • • • • • • • • • • • • • • | еу                                                                      | _                | 3                        | 50 / 130mm                                                                                                                 | ×                                                                                                                                          |          | 22                         |
|                                       |                                                                         | _                | 4                        |                                                                                                                            |                                                                                                                                            |          |                            |
| EI                                    | ND OF BOREHOLE                                                          | ~167.7           |                          | 50 / 130mm                                                                                                                 | ×                                                                                                                                          |          |                            |
|                                       |                                                                         |                  |                          |                                                                                                                            |                                                                                                                                            |          |                            |
|                                       |                                                                         |                  |                          |                                                                                                                            | Elapsed<br>Time Water<br>Level<br>(m)                                                                                                      | H        | ole Op<br>to (m)           |
| è<br>e>                               | kp.                                                                     |                  |                          | A                                                                                                                          | completion         dry           pr. 28, 2020         1.28           ay 12, 2020         1.45                                              |          | 4.6<br>-<br>-              |


| Soil Description         ELV.<br>(173,37)         Env or (10,100)         Market or (10,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | roject:<br>.ocation: | Geotechnical Investigatio<br>Mississauga, Ontario                      | n and Pa | ive       | mer   | nt A   | nal      | ysis | S |   |     |     |                       | S                     | heet I                    | No                      |        | of _                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------|----------|-----------|-------|--------|----------|------|---|---|-----|-----|-----------------------|-----------------------|---------------------------|-------------------------|--------|--------------------------|
| Auger Drill - Solid       Dyname Concreter         Jatum:       Geodetic       underson Trade of Tr                                                                                     | Date Drilled:        | Apr. 27, 2020                                                          |          |           | -     |        |          |      |   |   |     |     |                       |                       |                           | ading                   |        |                          |
| Salut       Geodetic       Soli Description       ELEV:<br>m       Soli Description       Control of the solid stress of the solid st                                                                          | Drill Type:          | Auger Drill - Solid                                                    |          | _         | Dynam | ic Con |          | st   | - |   | _   | Ur  | ndrain                | ed Triax              | ial at                    | ŀ                       |        | -0                       |
| Soil Description         ELV.<br>m         Mode of the comparison of the compariso                                       | )atum:               | Geodetic                                                               |          |           |       |        | est      |      |   |   | 5   |     |                       |                       | ure                       |                         |        | •                        |
| <ul> <li>- 150 mm TOPSOIL</li> <li>- 173.2</li> <li>- 173.2&lt;</li></ul>                                                                                                                                                                                                                                                                                                                                                                                        | Soil/Rock<br>Symbol  | Soil Description                                                       | m        | Depth (m) | Shear |        | 4<br>gth | )    |   |   | kPa |     | 25<br>Natu<br>Atterbe | a Moist<br>arg Limits | 50<br>ure Con<br>s (% Dry | 75<br>tent %<br>Weight) | Sample | Natu<br>Ur<br>Wei<br>kN/ |
| gravel, trace rootlets, brown, moist  CLAYEY SILT TILL: some sand to sandy, trace gravel, brown, moist  T172.5  END OF BOREHOLE  T172.5  Number of the second secon | ~ 15                 |                                                                        |          |           |       |        | 10       | 0    |   | 2 | 00  |     | 10                    |                       | 20                        | 30                      |        |                          |
| CLAVEY SILT TILL: some sand to<br>sandy, trace gravel, brown, moist<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FILL<br>grav         | .: clayey silt, trace sand, trace<br>vel, trace rootlets, brown, moist | _        |           |       |        |          |      |   |   |     |     |                       |                       | ×                         |                         |        |                          |
| sandy, trace gravel, brown, moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                                        | ~172.5   |           |       |        |          |      |   |   |     |     |                       |                       |                           |                         | -      |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                        | -        | 1         |       |        |          |      |   |   |     |     |                       |                       |                           |                         | -      |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                        | -        |           |       |        |          |      |   |   |     |     |                       | ×                     |                           |                         |        |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                        | ~171.2   | 2         |       |        |          |      |   |   |     |     |                       |                       |                           |                         |        |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | END                  | ) OF BOREHOLE                                                          |          |           |       |        |          |      |   |   |     |     |                       |                       |                           |                         |        |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                        |          |           |       |        |          |      |   |   |     |     |                       |                       |                           |                         |        |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                        |          |           |       |        |          |      |   |   |     |     |                       |                       |                           |                         |        |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                        |          |           |       |        |          |      |   |   |     |     |                       |                       |                           |                         |        |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                        |          |           |       |        |          |      |   |   |     |     |                       |                       |                           |                         | _      |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                        |          |           |       |        |          |      |   |   |     |     |                       |                       |                           |                         | _      |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                        |          |           |       |        |          |      |   |   |     |     |                       |                       |                           |                         |        |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                        |          |           |       |        |          |      |   |   |     |     |                       |                       |                           |                         |        |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                        |          |           |       |        |          |      |   |   |     |     |                       |                       |                           |                         |        |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                        |          |           |       |        |          |      |   |   |     |     |                       |                       |                           |                         | -      |                          |
| Elapsed Level Hol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>             |                                                                        | I        | _1 1      |       |        |          |      |   |   |     | Eli | apsed<br>Time         |                       | L                         | evel                    |        | le Op<br>to (m           |

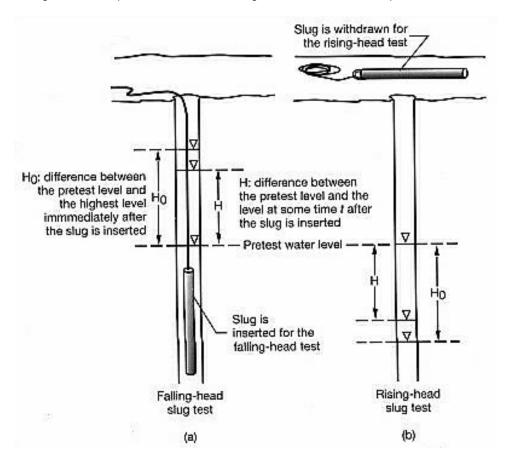

| ate Drilled:       Apr. 27, 2020       Auger Sample       SPT (N) Value       Auger Sample       Natural Moisture       Natural Moisture         ill Type:       Auger Drill - Solid       Dynamic Cone Test       Difference       Plastic and Liquid Limit       Voltaria de diguid Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oject:<br>cation:         | Geotechnical Investigation<br>Mississauga, Ontario | n and Pa   | ve         | mei                       | nt /                    | Ana                | lys | sis |          |   | <br>                       | _                                  |                                          | <b>)</b><br>wing<br>Shee | t Nc | )   | <u>1</u> ( | of _               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------|------------|------------|---------------------------|-------------------------|--------------------|-----|-----|----------|---|----------------------------|------------------------------------|------------------------------------------|--------------------------|------|-----|------------|--------------------|
| Build Not Not You     Soil Description <sup>o</sup> 100 mm TOPSOIL<br><sup>o</sup> 100 mm TOPSOIL<br><sup>o</sup> 173.15<br><sup>o</sup> 100 mm TOPSOIL<br><sup>o</sup> 173.15<br><sup>o</sup> 173.15 | ate Drilled:<br>ill Type: | Apr. 27, 2020<br>Auger Drill - Solid               |            | - s<br>- s | SPT (f<br>Dynan<br>Shelby | N) Va<br>nic C<br>7 Tub | alue<br>one T<br>e | est |     | <u>(</u> |   | Natu<br>Plas<br>Und<br>% S | iral N<br>tic ar<br>raine<br>train | loistur<br>nd Liqu<br>d Triax<br>at Fail | e<br>uid Lin<br>kial at  | nit  | ing | ×          | -0                 |
| CLAYEY SILT TILL: some sand to sandy, trace gravel, brown, moist   ~173.15     ~173.15     ~173.15     ~173.1     ~173.1     ~173.1     ~173.1     ~173.1     ~173.1     ~173.1     ~173.1     ~173.1     ~173.1     ~173.1     ~173.1     ~173.1     ~173.1     ~173.1     ~172.0     ~171.0     ~171.0     ~171.0     ~172.0     ~171.0     ~171.0     ~171.0     ~172.0     ~171.0     ~172.0     ~171.0     ~171.0     ~172.0     ~172.0     ~171.0     ~171.0     ~172.0     ~171.0     ~171.0     ~171.0     ~172.0     ~171.0     ~171.0     ~171.0     ~172.0     ~171.0     ~171.0     ~171.0     ~171.0     ~171.0     ~171.0     ~171.0     ~171.0 <th></th> <th></th> <th></th> <th></th> <th></th> <th>20</th> <th>5</th> <th></th> <th></th> <th></th> <th>2</th> <th>Com</th> <th>bustib<br/>25</th> <th>ole Vap</th> <th>50</th> <th>75</th> <th>5</th> <th>Sample</th> <th>Natu<br/>Un<br/>Weig</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                                                    |            |            |                           | 20                      | 5                  |     |     |          | 2 | Com                        | bustib<br>25                       | ole Vap                                  | 50                       | 75   | 5   | Sample     | Natu<br>Un<br>Weig |
| CLAYEY SILT TILL: some sand to<br>sandy, trace gravel, brown, moist<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | : clayey silt, trace sand, trace                   |            |            |                           |                         | -                  |     |     |          |   |                            |                                    |                                          |                          |      |     |            | kN/i               |
| ~171.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                                                    | ~172.0<br> |            |                           |                         |                    |     |     |          |   |                            |                                    | ×                                        |                          |      |     |            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | END                       | OF BOREHOLE                                        |            |            |                           |                         |                    |     |     |          |   |                            |                                    |                                          |                          |      |     |            |                    |



Appendix C – SWRT Procedures and Results








# \*exp. Single Well Response Test Procedure

A Single Well Response Test (SWRT), also known as a bail test or a slug test, is conducted in order to determine the saturated hydraulic conductivity (K) of an aquifer. The method of the SWRT is to characterize the change of groundwater level in a well or borehole over time.

In order to ensure consistency and repeatability, all **exp** employees are to follow the procedure outlined in this document when conducting SWRTs.

The figure below depicts a schematic of a slug and bail test and the respective water level changes.





## **Slug Test Procedure**

## **Equipment Required**

- Copy of a signed health and safety plan
- Copy of the work program
- PPE as required by Site-Specific HASP
- Copy of the monitoring well location plan/site plan
- Waterproof pen and bound field note book
- SWRT field data Entry form
- Disposable gloves
- Duct tape
- Deionized water
- Alconox (phosphate free detergent)
- Spray bottles
- Electronic water level meter and spare batteries
- Solid PVC or stainless steel slug of known volume or clean water
- String (nylon)
- Water pressure transducer (data logger) and baro-logger
- Watch or stop watch with second hand
- Plastic sheeting

## **Testing Procedure**

- 1. Remove cap from well and collect static water level
- 2. Remove waterra tubing/bailer and place in garbage bag. Record static water level measurement again.
- 3. Lower the slug into the well and record the dynamic water level.
- 4. Record the drawdown (for the slug test) at set five (5) second intervals for the first five (5) minutes, then reduce to every one (1) minute.
- 5. Continue recording the drawdown until 95% recovery is reached. To calculate this value: Find the difference between the dynamic water level and the static water level, then multiply by 95% (.95). Add the resulting value to the dynamic water level.
  - (Static Water Level Dynamic Water Level).95 + Static Water Level = 95% Recovery Value
- 6. Once complete, replace the waterra tubing/bailer and re-secure the well cap.

Note: If the well is deep, more than one slug may be inserted by attaching the slugs to a series.

Slugs must be washed with methanol, then lab grade soap, and then rinsed with de-ionized water after each use.



Based on the recorded observations, the hydraulic conductivity (in m/s) of the aquifer will be determined. In order to determine the hydraulic conductivity; the well diameter, radius of the borehole and length of the screen will also be required.

# **Bail Test Procedure**

## **Equipment Required**

- 20 L (5 gal) Graduated pail
- Stop watch or watch with seconds
- Garbage bags
- Water level meter
- Field sheets/log book
- Latex Gloves
- Bailer and Rope

## Procedure

- 1. Remove cap from well and collect static water level.
- 2. If using a **bailer**:
  - a. Affix the rope to the bailer.
  - b. Remove the waterra tubing and place in garbage bag
  - c. Record static water level measurement again.
  - d. Record how much water was removed by either counting the number of full bailers or emptying removed water into a container.
  - e. Quickly lower the bailer into the well and remove.
  - f. Continue this process until the water level will reduce no further.
  - g. Record the dynamic water level.
- 3. If using waterra to bail the water:
  - a. Pump the water into graduated bucket until the water level will reduce no further.
  - b. Record how much water has been removed.
  - c. Record the dynamic water level.
- 4. Record the recovery at set five (5) second intervals for the first (5) minutes, then reduce to every one (1) minute.
- 5. Continue recording the drawdown/recovery until 95% recovery is reached.
- 6. Once complete, replace any waterra tubing that may have been removed from the well and re-secure the well cap.

Appendix D – Laboratory Certificates of Analysis





Your P.O. #: BRM-ENV Your Project #: STR-02018572-00 Site Location: BAP-03W Your C.O.C. #: 762762-59-01

#### Attention: Jay Samarakkody

exp Services Inc 1595 Clark Blvd Brampton, ON CANADA L6T 4V1

> Report Date: 2020/05/27 Report #: R6188390 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

Data

Data

#### BV LABS JOB #: C0C1405 Received: 2020/05/19, 19:52

Sample Matrix: Water

| # Samples Received: 1 |  |
|-----------------------|--|
|                       |  |

|                                             |          | Date       | Date       |                   |                      |
|---------------------------------------------|----------|------------|------------|-------------------|----------------------|
| Analyses                                    | Quantity | Extracted  | Analyzed   | Laboratory Method | Analytical Method    |
| ABN Compounds in Water by GC/MS             | 1        | 2020/05/20 | 2020/05/21 | CAM SOP-00301     | EPA 8270 m           |
| Carbonaceous BOD                            | 1        | 2020/05/21 | 2020/05/26 | CAM SOP-00427     | SM 23 5210B m        |
| Total Cyanide                               | 1        | 2020/05/22 | 2020/05/22 | CAM SOP-00457     | OMOE E3015 5 m       |
| Fluoride                                    | 1        | 2020/05/22 | 2020/05/22 | CAM SOP-00449     | SM 23 4500-F C m     |
| Mercury in Water by CVAA                    | 1        | 2020/05/22 | 2020/05/22 | CAM SOP-00453     | EPA 7470A m          |
| Total Metals Analysis by ICPMS              | 1        | N/A        | 2020/05/26 | CAM SOP-00447     | EPA 6020B m          |
| E.coli, (CFU/100mL)                         | 1        | N/A        | 2020/05/19 | CAM SOP-00552     | MOE LSB E3371        |
| Total Nonylphenol in Liquids by HPLC        | 1        | 2020/05/22 | 2020/05/23 | CAM SOP-00313     | In-house Method      |
| Nonylphenol Ethoxylates in Liquids: HPLC    | 1        | 2020/05/22 | 2020/05/23 | CAM SOP-00313     | BV Labs Method       |
| Animal and Vegetable Oil and Grease         | 1        | N/A        | 2020/05/23 | CAM SOP-00326     | EPA1664B m,SM5520B m |
| Total Oil and Grease                        | 1        | 2020/05/23 | 2020/05/23 | CAM SOP-00326     | EPA1664B m,SM5520B m |
| Polychlorinated Biphenyl in Water           | 1        | 2020/05/21 | 2020/05/22 | CAM SOP-00309     | EPA 8082A m          |
| рН                                          | 1        | 2020/05/22 | 2020/05/22 | CAM SOP-00413     | SM 4500H+ B m        |
| Phenols (4AAP)                              | 1        | N/A        | 2020/05/21 | CAM SOP-00444     | OMOE E3179 m         |
| Sulphate by Automated Colourimetry          | 1        | N/A        | 2020/05/22 | CAM SOP-00464     | EPA 375.4 m          |
| Total Kjeldahl Nitrogen in Water            | 1        | 2020/05/22 | 2020/05/25 | CAM SOP-00938     | OMOE E3516 m         |
| Mineral/Synthetic O & G (TPH Heavy Oil) (1) | 1        | 2020/05/23 | 2020/05/23 | CAM SOP-00326     | EPA1664B m,SM5520F m |
| Total Suspended Solids                      | 1        | 2020/05/25 | 2020/05/25 | CAM SOP-00428     | SM 23 2540D m        |
| Volatile Organic Compounds in Water         | 1        | N/A        | 2020/05/22 | CAM SOP-00228     | EPA 8260C m          |

#### Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and

Page 1 of 12



Your P.O. #: BRM-ENV Your Project #: STR-02018572-00 Site Location: BAP-03W Your C.O.C. #: 762762-59-01

#### Attention: Jay Samarakkody

exp Services Inc 1595 Clark Blvd Brampton, ON CANADA L6T 4V1

> Report Date: 2020/05/27 Report #: R6188390 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

## BV LABS JOB #: COC1405

#### Received: 2020/05/19, 19:52

use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Christine Gripton, Senior Project Manager Email: Christine.Gripton@bvlabs.com Phone# (519)652-9444

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



#### PEEL SANITARY & STORM PKG (53-2010)

| BV Labs ID                            |                |          |            | MQV480       |         |          | MQV480              |         |          |
|---------------------------------------|----------------|----------|------------|--------------|---------|----------|---------------------|---------|----------|
| Sampling Date                         |                |          |            | 2020/05/19   |         |          | 2020/05/19          |         |          |
|                                       |                |          |            | 17:45        |         |          | 17:45               |         |          |
| COC Number                            |                |          |            | 762762-59-01 |         |          | 762762-59-01        |         |          |
|                                       | UNITS          | Criteria | Criteria-2 | BH/MW-17     | RDL     | QC Batch | BH/MW-17<br>Lab-Dup | RDL     | QC Batch |
| Calculated Parameters                 |                |          |            |              |         |          |                     |         |          |
| Total Animal/Vegetable Oil and Grease | mg/L           | 150      | -          | ND           | 0.50    | 6730296  |                     |         |          |
| Inorganics                            |                | •        |            |              |         | •        |                     |         |          |
| Total Carbonaceous BOD                | mg/L           | 300      | 15         | ND           | 2       | 6734087  |                     |         |          |
| Fluoride (F-)                         | mg/L           | 10       | -          | ND           | 0.10    | 6736882  |                     |         |          |
| Total Kjeldahl Nitrogen (TKN)         | mg/L           | 100      | 1          | 0.77         | 0.10    | 6738449  |                     |         |          |
| рН                                    | рН             | 5.5:10.0 | 6.0:9.0    | 7.50         |         | 6736891  |                     |         |          |
| Phenols-4AAP                          | mg/L           | 1        | 0.008      | ND           | 0.0010  | 6733885  |                     |         |          |
| Total Suspended Solids                | mg/L           | 350      | 15         | 16           | 10      | 6741746  |                     |         |          |
| Dissolved Sulphate (SO4)              | mg/L           | 1500     | -          | 260          | 1.0     | 6736858  |                     |         |          |
| Total Cyanide (CN)                    | mg/L           | 2        | 0.02       | ND           | 0.0050  | 6737472  |                     |         |          |
| Petroleum Hydrocarbons                |                | •        |            |              |         | •        |                     |         |          |
| Total Oil & Grease                    | mg/L           | -        | -          | ND           | 0.50    | 6740677  |                     |         |          |
| Total Oil & Grease Mineral/Synthetic  | mg/L           | 15       | -          | ND           | 0.50    | 6740678  |                     |         |          |
| Miscellaneous Parameters              |                | *        |            | •            | •       |          |                     |         |          |
| Nonylphenol Ethoxylate (Total)        | mg/L           | 0.2      | -          | ND           | 0.025   | 6736728  |                     |         |          |
| Nonylphenol (Total)                   | mg/L           | 0.02     | -          | ND           | 0.001   | 6736724  |                     |         |          |
| Metals                                |                | +        |            |              | •       | •        |                     |         |          |
| Mercury (Hg)                          | mg/L           | 0.01     | 0.0004     | ND           | 0.00010 | 6737782  | ND                  | 0.00010 | 6737782  |
| Total Aluminum (Al)                   | ug/L           | 50000    | -          | 100          | 5.0     | 6746231  |                     |         |          |
| Total Antimony (Sb)                   | ug/L           | 5000     | -          | ND           | 0.50    | 6746231  |                     |         |          |
| Total Arsenic (As)                    | ug/L           | 1000     | 20         | ND           | 1.0     | 6746231  |                     |         |          |
| Total Cadmium (Cd)                    | ug/L           | 700      | 8          | ND           | 0.10    | 6746231  |                     |         |          |
| Total Chromium (Cr)                   | ug/L           | 5000     | 80         | ND           | 5.0     | 6746231  |                     |         |          |
| Total Cobalt (Co)                     | ug/L           | 5000     | -          | 1.6          | 0.50    | 6746231  |                     |         |          |
| No Fill No Exceedance                 | 5              |          |            |              |         |          |                     |         |          |
| Grey Exceeds 1 crite                  | ria policy/lev | vel      |            |              |         |          |                     |         |          |

Black

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: The Regional Municipality of Peel Sanitary Sewer Discharge.

Exceeds both criteria/levels

By-Law Number 53-2010.

Criteria-2: The Regional Municipality of Peel Storm Sewer Discharge.

By-Law Number 53-2010.

ND = Not detected



#### PEEL SANITARY & STORM PKG (53-2010)

| BV Labs ID                         |         |          |            | MQV480       |      |          | MQV480              |     |          |
|------------------------------------|---------|----------|------------|--------------|------|----------|---------------------|-----|----------|
| Sampling Date                      |         |          |            | 2020/05/19   |      |          | 2020/05/19          |     |          |
|                                    |         |          |            | 17:45        |      |          | 17:45               |     |          |
| COC Number                         |         |          |            | 762762-59-01 |      |          | 762762-59-01        |     |          |
|                                    | UNITS   | Criteria | Criteria-2 | BH/MW-17     | RDL  | QC Batch | BH/MW-17<br>Lab-Dup | RDL | QC Batch |
| Total Copper (Cu)                  | ug/L    | 3000     | 50         | ND           | 1.0  | 6746231  |                     |     |          |
| Total Lead (Pb)                    | ug/L    | 3000     | 120        | ND           | 0.50 | 6746231  |                     |     |          |
| Total Manganese (Mn)               | ug/L    | 5000     | 50         | 330          | 2.0  | 6746231  |                     |     |          |
| Total Molybdenum (Mo)              | ug/L    | 5000     | -          | 1.4          | 0.50 | 6746231  |                     |     |          |
| Total Nickel (Ni)                  | ug/L    | 3000     | 80         | 4.0          | 1.0  | 6746231  |                     |     |          |
| Total Phosphorus (P)               | ug/L    | 10000    | -          | ND           | 100  | 6746231  |                     |     |          |
| Total Selenium (Se)                | ug/L    | 1000     | 20         | ND           | 2.0  | 6746231  |                     |     |          |
| Total Silver (Ag)                  | ug/L    | 5000     | 120        | ND           | 0.10 | 6746231  |                     |     |          |
| Total Tin (Sn)                     | ug/L    | 5000     | -          | ND           | 1.0  | 6746231  |                     |     |          |
| Total Titanium (Ti)                | ug/L    | 5000     | -          | 5.9          | 5.0  | 6746231  |                     |     |          |
| Total Zinc (Zn)                    | ug/L    | 3000     | 40         | 7.1          | 5.0  | 6746231  |                     |     |          |
| Semivolatile Organics              |         |          |            | •            |      |          |                     |     |          |
| Bis(2-ethylhexyl)phthalate         | ug/L    | 12       | 8.8        | ND           | 2.0  | 6732775  |                     |     |          |
| Di-N-butyl phthalate               | ug/L    | 80       | 15         | ND           | 2.0  | 6732775  |                     |     |          |
| Volatile Organics                  |         |          |            |              |      |          |                     |     |          |
| Benzene                            | ug/L    | 10       | 2          | ND           | 0.40 | 6732300  |                     |     |          |
| Chloroform                         | ug/L    | 40       | 2          | ND           | 0.40 | 6732300  |                     |     |          |
| 1,2-Dichlorobenzene                | ug/L    | 50       | 5.6        | ND           | 0.80 | 6732300  |                     |     |          |
| 1,4-Dichlorobenzene                | ug/L    | 80       | 6.8        | ND           | 0.80 | 6732300  |                     |     |          |
| cis-1,2-Dichloroethylene           | ug/L    | 4000     | 5.6        | ND           | 1.0  | 6732300  |                     |     |          |
| trans-1,3-Dichloropropene          | ug/L    | 140      | 5.6        | ND           | 0.80 | 6732300  |                     |     |          |
| Ethylbenzene                       | ug/L    | 160      | 2          | ND           | 0.40 | 6732300  |                     |     |          |
| Methylene Chloride(Dichloromethane | e) ug/L | 2000     | 5.2        | ND           | 4.0  | 6732300  |                     |     |          |
| Methyl Ethyl Ketone (2-Butanone)   | ug/L    | 8000     | -          | ND           | 20   | 6732300  |                     |     |          |
| Styrene                            | ug/L    | 200      | -          | ND           | 0.80 | 6732300  |                     |     |          |
| No Fill No Exceeda                 | ance    |          |            |              |      |          |                     |     |          |

Grey

Black

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: The Regional Municipality of Peel Sanitary Sewer Discharge.

By-Law Number 53-2010.

Criteria-2: The Regional Municipality of Peel Storm Sewer Discharge.

By-Law Number 53-2010.

ND = Not detected

Page 4 of 12



## PEEL SANITARY & STORM PKG (53-2010)

| BV Labs ID                                        |                    |                 |            |            | MQV480       |      |          | MQV480              |      |          |
|---------------------------------------------------|--------------------|-----------------|------------|------------|--------------|------|----------|---------------------|------|----------|
| Sampling Date                                     |                    |                 |            |            | 2020/05/19   |      |          | 2020/05/19          |      |          |
|                                                   |                    |                 |            |            | 17:45        |      |          | 17:45               |      |          |
| COC Number                                        |                    |                 |            |            | 762762-59-01 |      |          | 762762-59-01        |      |          |
|                                                   |                    | UNITS           | Criteria   | Criteria-2 | BH/MW-17     | RDL  | QC Batch | BH/MW-17<br>Lab-Dup | RDL  | QC Batch |
| 1,1,2,2-Tetrachloroetha                           | ne                 | ug/L            | 1400       | 17         | ND           | 0.80 | 6732300  |                     |      |          |
| Tetrachloroethylene                               |                    | ug/L            | 1000       | 4.4        | ND           | 0.40 | 6732300  |                     |      |          |
| Toluene                                           |                    | ug/L            | 270        | 2          | ND           | 0.40 | 6732300  |                     |      |          |
| Trichloroethylene                                 |                    | ug/L            | 400        | 8          | ND           | 0.40 | 6732300  |                     |      |          |
| p+m-Xylene                                        |                    | ug/L            | -          | -          | ND           | 0.40 | 6732300  |                     |      |          |
| o-Xylene                                          |                    | ug/L            | -          | -          | ND           | 0.40 | 6732300  |                     |      |          |
| Total Xylenes                                     |                    | ug/L            | 1400       | 4.4        | ND           | 0.40 | 6732300  |                     |      |          |
| PCBs                                              |                    |                 |            |            |              |      |          |                     |      |          |
| Total PCB                                         |                    | ug/L            | 1          | 0.4        | ND           | 0.05 | 6734000  | ND                  | 0.05 | 6734000  |
| Microbiological                                   |                    |                 |            |            |              |      |          |                     |      |          |
| Escherichia coli                                  |                    | CFU/100mL       | -          | 200        | <10          | 10   | 6731505  |                     |      |          |
| Surrogate Recovery (%)                            |                    |                 |            |            |              |      |          |                     |      |          |
| 2,4,6-Tribromophenol                              |                    | %               | -          | -          | 66           |      | 6732775  |                     |      |          |
| 2-Fluorobiphenyl                                  |                    | %               | -          | -          | 44           |      | 6732775  |                     |      |          |
| 2-Fluorophenol                                    |                    | %               | -          | -          | 21           |      | 6732775  |                     |      |          |
| D14-Terphenyl                                     |                    | %               | -          | -          | 106          |      | 6732775  |                     |      |          |
| D5-Nitrobenzene                                   |                    | %               | -          | -          | 48           |      | 6732775  |                     |      |          |
| D5-Phenol                                         |                    | %               | -          | -          | 16           |      | 6732775  |                     |      |          |
| Decachlorobiphenyl                                |                    | %               | -          | -          | 119          |      | 6734000  | 96                  |      | 6734000  |
| 4-Bromofluorobenzene                              |                    | %               | -          | -          | 93           |      | 6732300  |                     |      |          |
| D4-1,2-Dichloroethane                             |                    | %               | -          | -          | 102          |      | 6732300  |                     |      |          |
| D8-Toluene                                        |                    | %               | -          | -          | 97           |      | 6732300  |                     |      |          |
| No Fill                                           | No Exceedanc       | e               |            |            |              |      |          |                     |      |          |
| Grey                                              | Exceeds 1 crite    | eria policy/lev | el         |            |              |      |          |                     |      |          |
| Black                                             | Exceeds both       |                 |            |            |              |      |          |                     |      |          |
| RDL = Reportable Detect                           |                    | ,               |            |            |              |      |          |                     |      |          |
| QC Batch = Quality Cont                           |                    |                 |            |            |              |      |          |                     |      |          |
| Lab-Dup = Laboratory In                           |                    | 1               |            |            |              |      |          |                     |      |          |
| Criteria: The Regional M<br>By-Law Number 53-2010 | unicipality of Pee |                 | ver Disch  | arge.      |              |      |          |                     |      |          |
| Criteria-2: The Regional<br>By-Law Number 53-2010 |                    | eel Storm Sev   | ver Discha | arge.      |              |      |          |                     |      |          |
| ND = Not detected                                 |                    |                 |            |            |              |      |          |                     |      |          |



#### **TEST SUMMARY**

| BV Labs ID: | MQV480   |
|-------------|----------|
| Sample ID:  | BH/MW-17 |
| Matrix:     | Water    |

| Collected: | 2020/05/19 |
|------------|------------|
| Shipped:   |            |
| Received:  | 2020/05/19 |

| Test Description                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst               |
|------------------------------------------|-----------------|---------|------------|---------------|-----------------------|
| ABN Compounds in Water by GC/MS          | GC/MS           | 6732775 | 2020/05/20 | 2020/05/21    | Kathy Horvat          |
| Carbonaceous BOD                         | DO              | 6734087 | 2020/05/21 | 2020/05/26    | Frank Zhang           |
| Total Cyanide                            | SKAL/CN         | 6737472 | 2020/05/22 | 2020/05/22    | Louise Harding        |
| Fluoride                                 | ISE             | 6736882 | 2020/05/22 | 2020/05/22    | Surinder Rai          |
| Mercury in Water by CVAA                 | CV/AA           | 6737782 | 2020/05/22 | 2020/05/22    | Meghaben Patel        |
| Total Metals Analysis by ICPMS           | ICP/MS          | 6746231 | N/A        | 2020/05/26    | Azita Fazaeli         |
| E.coli, (CFU/100mL)                      | PL              | 6731505 | N/A        | 2020/05/19    | Ranju Chaudhari       |
| Total Nonylphenol in Liquids by HPLC     | LC/FLU          | 6736724 | 2020/05/22 | 2020/05/23    | Tonghui ( Jenny) Chen |
| Nonylphenol Ethoxylates in Liquids: HPLC | LC/FLU          | 6736728 | 2020/05/22 | 2020/05/23    | Tonghui ( Jenny) Chen |
| Animal and Vegetable Oil and Grease      | BAL             | 6730296 | N/A        | 2020/05/23    | Automated Statchk     |
| Total Oil and Grease                     | BAL             | 6740677 | 2020/05/23 | 2020/05/23    | Khushboo Kapoor       |
| Polychlorinated Biphenyl in Water        | GC/ECD          | 6734000 | 2020/05/21 | 2020/05/22    | Sarah Huang           |
| рН                                       | AT              | 6736891 | 2020/05/22 | 2020/05/22    | Surinder Rai          |
| Phenols (4AAP)                           | TECH/PHEN       | 6733885 | N/A        | 2020/05/21    | Bramdeo Motiram       |
| Sulphate by Automated Colourimetry       | KONE            | 6736858 | N/A        | 2020/05/22    | Deonarine Ramnarine   |
| Total Kjeldahl Nitrogen in Water         | SKAL            | 6738449 | 2020/05/22 | 2020/05/25    | Rajni Tyagi           |
| Mineral/Synthetic O & G (TPH Heavy Oil)  | BAL             | 6740678 | 2020/05/23 | 2020/05/23    | Khushboo Kapoor       |
| Total Suspended Solids                   | BAL             | 6741746 | 2020/05/25 | 2020/05/25    | Massarat Jan          |
| Volatile Organic Compounds in Water      | GC/MS           | 6732300 | N/A        | 2020/05/22    | Rebecca McClean       |

| BV Labs ID: MQV480 Dup<br>Sample ID: BH/MW-17<br>Matrix: Water |                 |         |            |               | Collected: 2020/05/19<br>Shipped:<br>Received: 2020/05/19 |  |
|----------------------------------------------------------------|-----------------|---------|------------|---------------|-----------------------------------------------------------|--|
| Test Description                                               | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                                                   |  |
| Mercury in Water by CVAA                                       | CV/AA           | 6737782 | 2020/05/22 | 2020/05/22    | Meghaben Patel                                            |  |
| Polychlorinated Biphenyl in Water                              | GC/ECD          | 6734000 | 2020/05/21 | 2020/05/22    | Sarah Huang                                               |  |



#### **GENERAL COMMENTS**

| Each te | mperature is the a | verage of up to th | ree cooler temperatures taken at receipt                                                             |
|---------|--------------------|--------------------|------------------------------------------------------------------------------------------------------|
| I       | Package 1          | 7.3°C              | ]                                                                                                    |
| Sample  | MQV480 [BH/MW      | /-17] : VOC Analys | sis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly. |
| Results | relate only to the | items tested.      |                                                                                                      |



#### **QUALITY ASSURANCE REPORT**

exp Services Inc Client Project #: STR-02018572-00 Site Location: BAP-03W Your P.O. #: BRM-ENV Sampler Initials: JM

|          |                                     |            | Matrix     | Spike     | SPIKED     | BLANK     | Method B     | lank  | RP        | D         | QC Sta     | ndard     |
|----------|-------------------------------------|------------|------------|-----------|------------|-----------|--------------|-------|-----------|-----------|------------|-----------|
| QC Batch | Parameter                           | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value        | UNITS | Value (%) | QC Limits | % Recovery | QC Limits |
| 6732300  | 4-Bromofluorobenzene                | 2020/05/21 | 101        | 70 - 130  | 99         | 70 - 130  | 96           | %     |           |           |            |           |
| 6732300  | D4-1,2-Dichloroethane               | 2020/05/21 | 110        | 70 - 130  | 99         | 70 - 130  | 100          | %     |           |           |            |           |
| 6732300  | D8-Toluene                          | 2020/05/21 | 107        | 70 - 130  | 101        | 70 - 130  | 98           | %     |           |           |            |           |
| 6732775  | 2,4,6-Tribromophenol                | 2020/05/21 | 88         | 10 - 130  | 96         | 10 - 130  | 78           | %     |           |           |            |           |
| 6732775  | 2-Fluorobiphenyl                    | 2020/05/21 | 48         | 30 - 130  | 77         | 30 - 130  | 82           | %     |           |           |            |           |
| 6732775  | 2-Fluorophenol                      | 2020/05/21 | 29         | 10 - 130  | 50         | 10 - 130  | 40           | %     |           |           |            |           |
| 6732775  | D14-Terphenyl                       | 2020/05/21 | 90         | 30 - 130  | 94         | 30 - 130  | 95           | %     |           |           |            |           |
| 6732775  | D5-Nitrobenzene                     | 2020/05/21 | 49         | 30 - 130  | 77         | 30 - 130  | 72           | %     |           |           |            |           |
| 6732775  | D5-Phenol                           | 2020/05/21 | 19         | 10 - 130  | 33         | 10 - 130  | 29           | %     |           |           |            |           |
| 6734000  | Decachlorobiphenyl                  | 2020/05/22 | 98         | 60 - 130  | 102        | 60 - 130  | 104          | %     |           |           |            |           |
| 6732300  | 1,1,2,2-Tetrachloroethane           | 2020/05/21 | 126        | 70 - 130  | 104        | 70 - 130  | ND, RDL=0.40 | ug/L  | NC        | 30        |            |           |
| 6732300  | 1,2-Dichlorobenzene                 | 2020/05/21 | 92         | 70 - 130  | 89         | 70 - 130  | ND, RDL=0.40 | ug/L  | NC        | 30        |            |           |
| 6732300  | 1,4-Dichlorobenzene                 | 2020/05/21 | 96         | 70 - 130  | 94         | 70 - 130  | ND, RDL=0.40 | ug/L  | NC        | 30        |            |           |
| 6732300  | Benzene                             | 2020/05/21 | 100        | 70 - 130  | 95         | 70 - 130  | ND, RDL=0.20 | ug/L  | NC        | 30        |            |           |
| 6732300  | Chloroform                          | 2020/05/21 | 96         | 70 - 130  | 92         | 70 - 130  | ND, RDL=0.20 | ug/L  | NC        | 30        |            |           |
| 6732300  | cis-1,2-Dichloroethylene            | 2020/05/21 | 95         | 70 - 130  | 90         | 70 - 130  | ND, RDL=0.50 | ug/L  | NC        | 30        |            |           |
| 6732300  | Ethylbenzene                        | 2020/05/21 | 88         | 70 - 130  | 89         | 70 - 130  | ND, RDL=0.20 | ug/L  | NC        | 30        |            |           |
| 6732300  | Methyl Ethyl Ketone (2-Butanone)    | 2020/05/21 | 130        | 60 - 140  | 101        | 60 - 140  | ND, RDL=10   | ug/L  | NC        | 30        |            |           |
| 6732300  | Methylene Chloride(Dichloromethane) | 2020/05/21 | 116        | 70 - 130  | 92         | 70 - 130  | ND, RDL=2.0  | ug/L  | NC        | 30        |            |           |
| 6732300  | o-Xylene                            | 2020/05/21 | 91         | 70 - 130  | 90         | 70 - 130  | ND, RDL=0.20 | ug/L  | NC        | 30        |            |           |
| 6732300  | p+m-Xylene                          | 2020/05/21 | 99         | 70 - 130  | 94         | 70 - 130  | ND, RDL=0.20 | ug/L  | NC        | 30        |            |           |
| 6732300  | Styrene                             | 2020/05/21 | 95         | 70 - 130  | 91         | 70 - 130  | ND, RDL=0.40 | ug/L  | NC        | 30        |            |           |
| 6732300  | Tetrachloroethylene                 | 2020/05/21 | 90         | 70 - 130  | 86         | 70 - 130  | ND, RDL=0.20 | ug/L  | NC        | 30        |            |           |
| 6732300  | Toluene                             | 2020/05/21 | 100        | 70 - 130  | 90         | 70 - 130  | ND, RDL=0.20 | ug/L  | NC        | 30        |            |           |
| 6732300  | Total Xylenes                       | 2020/05/21 |            |           |            |           | ND, RDL=0.20 | ug/L  | NC        | 30        |            |           |
| 6732300  | trans-1,3-Dichloropropene           | 2020/05/21 | 116        | 70 - 130  | 106        | 70 - 130  | ND, RDL=0.40 | ug/L  | NC        | 30        |            |           |
| 6732300  | Trichloroethylene                   | 2020/05/21 | 100        | 70 - 130  | 94         | 70 - 130  | ND, RDL=0.20 | ug/L  | NC        | 30        |            |           |
| 6732775  | Bis(2-ethylhexyl)phthalate          | 2020/05/21 | 86         | 30 - 130  | 91         | 30 - 130  | ND, RDL=2.0  | ug/L  | NC        | 40        |            |           |
| 6732775  | Di-N-butyl phthalate                | 2020/05/21 | 94         | 30 - 130  | 99         | 30 - 130  | ND, RDL=2.0  | ug/L  | NC        | 40        |            |           |

#### Page 8 of 12



### QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: STR-02018572-00 Site Location: BAP-03W Your P.O. #: BRM-ENV Sampler Initials: JM

|          |                                      |            | Matrix     | Spike     | SPIKED     | BLANK     | Method B           | Blank | RP        | D         | QC Sta     | indard    |
|----------|--------------------------------------|------------|------------|-----------|------------|-----------|--------------------|-------|-----------|-----------|------------|-----------|
| QC Batch | Parameter                            | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value              | UNITS | Value (%) | QC Limits | % Recovery | QC Limits |
| 6733885  | Phenols-4AAP                         | 2020/05/21 | 96         | 80 - 120  | 98         | 80 - 120  | ND,<br>RDL=0.0010  | mg/L  | 18        | 20        |            |           |
| 6734000  | Total PCB                            | 2020/05/22 | 91         | 60 - 130  | 99         | 60 - 130  | ND, RDL=0.05       | ug/L  | NC        | 40        |            |           |
| 6734087  | Total Carbonaceous BOD               | 2020/05/26 |            |           |            |           | ND,RDL=2           | mg/L  | 2.4       | 30        | 106        | 85 - 115  |
| 6736724  | Nonylphenol (Total)                  | 2020/05/23 | 119        | 50 - 130  | 193 (1)    | 50 - 130  | ND,<br>RDL=0.001   | mg/L  | NC        | 40        |            |           |
| 6736728  | Nonylphenol Ethoxylate (Total)       | 2020/05/23 | 93         | 50 - 130  | 91         | 50 - 130  | ND,<br>RDL=0.025   | mg/L  | NC        | 40        |            |           |
| 6736858  | Dissolved Sulphate (SO4)             | 2020/05/22 | NC         | 75 - 125  | 102        | 80 - 120  | ND, RDL=1.0        | mg/L  | 2.8       | 20        |            |           |
| 6736882  | Fluoride (F-)                        | 2020/05/22 | 93         | 80 - 120  | 99         | 80 - 120  | ND, RDL=0.10       | mg/L  | NC        | 20        |            |           |
| 6736891  | рН                                   | 2020/05/22 |            |           | 102        | 98 - 103  |                    |       | 0.26      | N/A       |            |           |
| 6737472  | Total Cyanide (CN)                   | 2020/05/22 | 97         | 80 - 120  | 95         | 80 - 120  | ND,<br>RDL=0.0050  | mg/L  | NC        | 20        |            |           |
| 6737782  | Mercury (Hg)                         | 2020/05/22 | 105        | 75 - 125  | 92         | 80 - 120  | ND,<br>RDL=0.00010 | mg/L  | NC        | 20        |            |           |
| 6738449  | Total Kjeldahl Nitrogen (TKN)        | 2020/05/25 | NC         | 80 - 120  | 98         | 80 - 120  | ND, RDL=0.10       | mg/L  | 0.76      | 20        | 94         | 80 - 120  |
| 6740677  | Total Oil & Grease                   | 2020/05/23 |            |           | 98         | 85 - 115  | ND, RDL=0.50       | mg/L  | 2.6       | 25        |            |           |
| 6740678  | Total Oil & Grease Mineral/Synthetic | 2020/05/23 |            |           | 95         | 85 - 115  | ND, RDL=0.50       | mg/L  | 3.2       | 25        |            |           |
| 6741746  | Total Suspended Solids               | 2020/05/25 |            |           |            |           | ND, RDL=10         | mg/L  | 2.9       | 25        | 99         | 85 - 115  |
| 6746231  | Total Aluminum (Al)                  | 2020/05/26 | 114        | 80 - 120  | 101        | 80 - 120  | ND, RDL=5.0        | ug/L  |           |           |            |           |
| 6746231  | Total Antimony (Sb)                  | 2020/05/26 | 100        | 80 - 120  | 98         | 80 - 120  | ND, RDL=0.50       | ug/L  |           |           |            |           |
| 6746231  | Total Arsenic (As)                   | 2020/05/26 | 100        | 80 - 120  | 100        | 80 - 120  | ND, RDL=1.0        | ug/L  |           |           |            |           |
| 6746231  | Total Cadmium (Cd)                   | 2020/05/26 | 99         | 80 - 120  | 97         | 80 - 120  | ND, RDL=0.10       | ug/L  |           |           |            |           |
| 6746231  | Total Chromium (Cr)                  | 2020/05/26 | 99         | 80 - 120  | 99         | 80 - 120  | ND, RDL=5.0        | ug/L  |           |           |            |           |
| 6746231  | Total Cobalt (Co)                    | 2020/05/26 | 98         | 80 - 120  | 99         | 80 - 120  | ND, RDL=0.50       | ug/L  |           |           |            |           |
| 6746231  | Total Copper (Cu)                    | 2020/05/26 | 101        | 80 - 120  | 99         | 80 - 120  | ND, RDL=1.0        | ug/L  |           |           |            |           |
| 6746231  | Total Lead (Pb)                      | 2020/05/26 | 94         | 80 - 120  | 94         | 80 - 120  | ND, RDL=0.50       | ug/L  |           |           |            |           |
| 6746231  | Total Manganese (Mn)                 | 2020/05/26 | 94         | 80 - 120  | 95         | 80 - 120  | ND, RDL=2.0        | ug/L  |           |           |            |           |
| 6746231  | Total Molybdenum (Mo)                | 2020/05/26 | 101        | 80 - 120  | 98         | 80 - 120  | ND, RDL=0.50       | ug/L  |           |           |            |           |
| 6746231  | Total Nickel (Ni)                    | 2020/05/26 | 97         | 80 - 120  | 98         | 80 - 120  | ND, RDL=1.0        | ug/L  |           |           |            |           |
| 6746231  | Total Phosphorus (P)                 | 2020/05/26 | 106        | 80 - 120  | 105        | 80 - 120  | ND, RDL=100        | ug/L  |           |           |            |           |

Page 9 of 12



#### QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: STR-02018572-00 Site Location: BAP-03W Your P.O. #: BRM-ENV Sampler Initials: JM

|          |                     |            | Matrix     | Spike     | SPIKED     | BLANK     | Method B     | Blank | RPI       | C         | QC Sta     | ndard     |
|----------|---------------------|------------|------------|-----------|------------|-----------|--------------|-------|-----------|-----------|------------|-----------|
| QC Batch | Parameter           | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value        | UNITS | Value (%) | QC Limits | % Recovery | QC Limits |
| 6746231  | Total Selenium (Se) | 2020/05/26 | 109        | 80 - 120  | 108        | 80 - 120  | ND, RDL=2.0  | ug/L  |           |           |            |           |
| 6746231  | Total Silver (Ag)   | 2020/05/26 | 97         | 80 - 120  | 96         | 80 - 120  | ND, RDL=0.10 | ug/L  |           |           |            |           |
| 6746231  | Total Tin (Sn)      | 2020/05/26 | 94         | 80 - 120  | 92         | 80 - 120  | ND, RDL=1.0  | ug/L  |           |           |            |           |
| 6746231  | Total Titanium (Ti) | 2020/05/26 | 91         | 80 - 120  | 92         | 80 - 120  | ND, RDL=5.0  | ug/L  |           |           |            |           |
| 6746231  | Total Zinc (Zn)     | 2020/05/26 | 101        | 80 - 120  | 105        | 80 - 120  | ND, RDL=5.0  | ug/L  |           |           |            |           |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The recovery was above the upper control limit. This may represent a high bias in some results for this specific analyte. For results that were not detected (ND), this potential bias has no impact.



#### VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Service Specialist

an

Ranju Chaudhari

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



## Exceedance Summary Table – Peel Region Sanitary 2010

**Result Exceedances** 

| Sample ID                                          | BV Labs ID | Parameter                   | Criteria                  | Result            | DL           | UNITS          |
|----------------------------------------------------|------------|-----------------------------|---------------------------|-------------------|--------------|----------------|
| No Exceedances                                     |            |                             |                           |                   |              |                |
| The exceedance summar<br>applicable regulatory gui |            | ourposes only and should no | t be considered a compreh | ensive listing or | statement of | conformance to |

## Exceedance Summary Table – Peel Region Storm 2010

#### **Result Exceedances**

| Sample ID                                       | BV Labs ID | Parameter                        | Criteria            | Result            | DL           | UNITS          |
|-------------------------------------------------|------------|----------------------------------|---------------------|-------------------|--------------|----------------|
| BH/MW-17                                        | MQV480-10  | Total Manganese (Mn)             | 50                  | 330               | 2.0          | ug/L           |
| BH/MW-17                                        | MQV480-06  | Total Suspended Solids           | 15                  | 16                | 10           | mg/L           |
| The exceedance summa<br>applicable regulatory g | , ,        | urposes only and should not be c | onsidered a compreh | ensive listing or | statement of | conformance to |

| ER               | AIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | 3.                       |                          |                              |                        |                        |         |          |           |             |          |             |                   |          |                |              |                               |                                                                          |                                    |                  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|--------------------------|------------------------------|------------------------|------------------------|---------|----------|-----------|-------------|----------|-------------|-------------------|----------|----------------|--------------|-------------------------------|--------------------------------------------------------------------------|------------------------------------|------------------|
| _                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INVOICE TO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | •                        |                          | 0                            | REPOR                  |                        | -       |          |           | -           |          | 20012080046 | T INFORMA         |          |                |              |                               | Laboratory U                                                             | 1                                  |                  |
| mpany            | Name: #30554 exp S<br>Central Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Company                  | Name:                    | EXP                          | SERV                   | ILES                   | INC.    | ,        |           | Quotation   | 1#       |             | TT STI            |          | M-2            |              |                               | BV Labs Job #:                                                           | Bottle                             | e Order #        |
| lention:         | 1595 Clark Blv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Attention<br>Address     | 10.00                    | TAY C                        | SAMA                   | DAVU                   | CICOT   | 201      | CuA (     | P.O. #.     |          |             | (M - E<br>2 - 020 |          | 12 - 0         | ~            |                               |                                                                          |                                    |                  |
| iuless.          | Brampton ON I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 700000           | Address.                 |                          | TASNE                        | SAMA<br>SAMA<br>EEL. 1 | YAHA                   | L -     | 161      | CXP.1     | Project N   | ama:     |             | BAP - C           |          | 12 0           |              |                               | COC #:                                                                   |                                    | 62762<br>t Manag |
| d:               | (905) 793-9800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05) 793-0641     | Tet                      |                          | <u></u>                      |                        | Fax                    |         |          |           | Site #:     | une.     |             |                   |          |                |              | 111111                        |                                                                          | Cheven                             | ine Gripti       |
| nail:            | the state of the s | exp.com; Luizza.Jose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                          | The second second second | ALC: NAMES OF TAXABLE PARTY. | NHE                    | KYGE                   | XP.((   | DM       | SUL.      | Sampled     |          |             | TM                |          |                |              |                               | C#762762-59-01                                                           |                                    | he Gripo         |
| MOE              | REGULATED DRINKI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NG WATER OR WATE<br>ON THE BV LABS DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R INTENDED       | FOR HUMAN C              | ONSUMP                   | TION MU                      | STBE                   |                        |         | -        | 1         | ANALYSIS RE | QUESTEE  | ) (PLEASE B | E SPECIFIC        | )        |                |              |                               | Turnaround Time (T/<br>Please provide advance no                         |                                    | 5500550          |
| P                | egulation 153 (2011)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and the second s | Other Regulation | the second second second | ALL PROPERTY             | cial Instruc                 |                        | cle):                  | . '     |          |           |             |          |             |                   |          |                | 1            | Regular (S                    | tandard) TAT:                                                            | Martha all forms in Rushic Labored |                  |
| Table 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sanitary Sewer   |                          | Spe                      | cial instruc                 | tions                  | e circ<br>VI           | ewer    |          |           |             |          |             |                   |          |                |              |                               | d if Rush TAT is not specified)                                          |                                    |                  |
| Table 2          | Ind/Comm Coar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | se Reg 558.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Storm Sewer B    |                          |                          |                              |                        | lease<br>/ Cr          | orm S   |          |           |             |          |             |                   |          |                |              |                               | = 5-7 Working days for most tests<br>Standard TAT for certain tests such |                                    | Furans           |
| Table 3<br>Table | Agni/Other For I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sec. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Municipality     | TEEL                     | 1.11                     |                              |                        | ed (pie                | & Ste   |          |           |             |          |             |                   |          | ÷*)            | 4            | days - contact                | your Project Manager for details                                         |                                    |                  |
|                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PWQO     Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                          | <b>B</b>                 |                              | 2                      |                        | nitary  |          |           |             |          |             |                   |          |                |              | Job Specific<br>Date Required | : Rush TAT (if applies to entire                                         | submission)<br>Time Required       |                  |
|                  | Include Crite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ria on Certificate of Ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | alvsis (Y/N)?    | ES .                     |                          |                              |                        | Field Filter<br>Metals | Sa an   |          |           |             |          | 1           |                   |          | ,              |              |                               | ration Number.                                                           |                                    | put?             |
| Τ                | Sample Barcode Label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample (Location) Id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | Date Sampled             | Time Sam                 | pled                         | Matrix                 | Ē                      | acke    |          |           |             |          |             |                   |          |                |              | # of Bottles                  | C                                                                        | (call lab for #)<br>omments        |                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BH/MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                | 20/05/19                 | 5.451                    | рм (                         | Giw                    | NO                     | ×       |          |           |             |          |             |                   |          |                |              | 18                            | * PROVIDE                                                                | = (00 (                            | In               |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |                          |                              |                        |                        |         |          |           |             |          |             |                   |          |                |              |                               | REPORT                                                                   |                                    |                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |                          |                              |                        |                        |         |          |           |             |          |             |                   |          |                |              |                               |                                                                          | AR 501                             | AY               |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |                          |                              |                        |                        |         |          |           |             |          |             | C.                |          |                |              |                               | TAT.                                                                     |                                    |                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                |                          | 5                        |                              |                        | 1112                   |         |          |           |             |          |             |                   |          |                | 4            |                               |                                                                          |                                    |                  |
| 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |                          |                              |                        |                        |         |          | +         | -           |          |             |                   |          |                | -            |                               |                                                                          |                                    |                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |                          |                              |                        |                        |         |          |           |             |          |             |                   |          |                |              | . '                           | 19-May-20 19                                                             |                                    |                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |                          |                              |                        |                        |         |          |           |             |          |             |                   |          |                |              |                               |                                                                          | 1.12                               |                  |
| -                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |                          |                              |                        |                        | -       |          |           |             |          |             |                   |          |                |              |                               | hristine Gripton                                                         | 1                                  | -                |
|                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |                          |                              |                        |                        |         |          |           |             |          |             |                   |          |                |              | 10.111                        | C0C1405                                                                  |                                    |                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |                          |                              |                        |                        |         |          |           |             |          |             |                   |          |                |              | -                             | 0001400                                                                  |                                    | -                |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |                          |                              |                        | علجات تر               |         |          |           |             |          |             |                   |          |                |              | KV                            | G ENV-844                                                                |                                    |                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          |                          |                              |                        |                        |         |          |           |             |          |             |                   |          |                |              | 1                             |                                                                          |                                    |                  |
| 1                | * RELINQUISHED BY: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Signature/Print)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date: (YY/N      | IM/DD) Tin               | ne                       |                              | RECEIVED B             | (: (Signature)         | (Print) | 14       | Date: /   | Y/MM/DD)    | -        | îme         | # jars us         | ed and   |                |              | Laborat                       | ory Use Only                                                             |                                    | -                |
| J                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20/05/           |                          | SPM V                    |                              |                        | AN GEUR                |         | -        | 2020/     | 5/14        |          | 52          | not sub           |          | Time Sen       | sitive       |                               | re /ºC1 on Recei                                                         | dy Seal Ye                         | 25               |
|                  | Jam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                          | - IL                     | 4                            |                        | eno neon               |         |          | 5-010     |             | 11       |             |                   | 1.10     |                |              | 4/1                           |                                                                          | act                                | 1                |
|                  | THERMORE ACREED TO INIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VRITING, WORK SUBMITTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ON THIS CHAIN O  | E CUSTORY IS SUE         | LECT TO P                | VI ADS' STA                  |                        | AS AND COND            |         | SNING OI | E THIS CH | AIN OF CUST | ODX DOCI | INACALT 1C  | 102               | NET VIET | CONTRACT (Free | - 97 M 108 M | CALL STREET                   |                                                                          | ite: BV Labs                       | Yellow           |

# Appendix E – Construction Flow Rate Calculations



# **APPENDIX E: Construction Dewatering Calculations**

Bombardier Aerospace Project (Off-Site Work), Mississauga, Ontario BRM-02018572-00

#### Table E-1: Flow all Sides of the Excavation

| Parameters                                                                  | Symbols        | Unit                | Value         |
|-----------------------------------------------------------------------------|----------------|---------------------|---------------|
| Ground Elevation                                                            | -              | mASL                | 172.4 - 173.4 |
| Highest Groundwater Elevation                                               | -              | mASL                | 172.3         |
| Lowest sewer invert Elevation                                               |                | mASL                | 168.8         |
| Dewatered Elevation Target                                                  | -              | mASL                | 167.8         |
| Top of the Water-Bearing Zone                                               | -              | mASL                | 172.3         |
| Base of the Water-Bearing Zone                                              | -              | mASL                | 164.8         |
| Height of Water Table Above the Base of Water-Bearing Zone                  | н              | m                   | 7.5           |
| Height of Dewatering Target Above the Base of Water-Bearing Zone            | h <sub>w</sub> | m                   | 3.0           |
| Hydraulic Conductivity                                                      | К              | m/s                 | 1.50E-07      |
| Length of Excavation                                                        | -              | m                   | 200.0         |
| Width of Excavation                                                         | -              | m                   | 2.0           |
| Method to Calculate Radius of Influence                                     | -              | -                   | Sichardt      |
| Radius of Influence from Sides of Excavation                                | Ro             | m                   | 5.2           |
| Distance to Linear Source from Sides of excavation                          | Lo=Ro/2        | m                   | 2.6           |
| Dewatering Flow Rate (unconfined linear flow component)                     | Q              | m³/day              | 47.3          |
| Factor of Safety                                                            | FS             | -                   | 1.5           |
| Dewatering Flow Rate (multiplied by factor of safety)                       | Q.FS           | m³/day              | 71.0          |
| Precipitation Event                                                         | -              | mm/day              | 15.0          |
| Volume from Precipitation                                                   | -              | m <sup>3</sup> /day | 6.0           |
| Dewatering Flow Rate Without Safety Factor (including rainwater collection) | -              | m <sup>3</sup> /day | 50.0          |
| Dewatering Flow Rate With Safety Factor (including rainwater collection)    | -              | m <sup>3</sup> /day | 80.0          |
| Assume 100 m of excavation kept open at any given time                      |                | m <sup>3</sup> /day | 40.0          |

#### Notes:

mASL - meters above sea level

## Analytical Solution for Estimating Plane Flow from an Unconfined Aquifer to a Fully-Penetrating Excavation

$$Q_w = Kx \frac{H^2 - {h_w}^2}{L_o}$$

Where:

 $Q_w =$  Flow rate per unit length of excavation (m<sup>3</sup>/s)

K = Hydraulic conductivity (m/s)

H = Height of static water table above base of water-bearing zone (m)

 $h_{\rm w}$  = Height of target water level above the base of water-bearing zone  $\mbox{ (m)}$ 

L<sub>o</sub>=Distance of Influence (m)

x=Length of excavation (m)

(Based on the Dupuit Equation)